Members Can Post Anonymously On This Site
The Fingertip Galaxy: Reflecting Euclid in art
-
Similar Topics
-
By NASA
NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
Solving Milky Way mystery
Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
“I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
“Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
Galactic life cycles
The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
“Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
“If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
“With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
“People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
Download additional images and video from NASA’s Scientific Visualization Studio.
For more information about the Roman Space Telescope, visit:
https://www.nasa.gov/roman
By Laine Havens
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
Article 2 months ago View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Spies Galaxy with Lots to See
This NASA/ESA Hubble Space Telescope features the galaxy NGC 7456. ESA/Hubble & NASA, D. Thilker While it may appear as just another spiral galaxy among billions in the universe, this image from the NASA/ESA Hubble Space Telescope reveals a galaxy with plenty to study. The galaxy, NGC 7456, is located over 51 million light-years away in the constellation Grus (the Crane).
This Hubble image reveals fine detail in the galaxy’s patchy spiral arms, followed by clumps of dark, obscuring dust. Blossoms of glowing pink are rich reservoirs of gas where new stars are forming, illuminating the clouds around them and causing the gas to emit this tell-tale red light. The Hubble observing program that collected this data focused on the galaxy’s stellar activity, tracking new stars, clouds of hydrogen, and star clusters to learn how the galaxy evolved through time.
Hubble, with its ability to capture visible, ultraviolet, and some infrared light, is not the only observatory focused on NGC 7456. ESA’s XMM-Newton satellite imaged X-rays from the galaxy on multiple occasions, discovering many so-called ultraluminous X-ray sources. These small, compact objects emit terrifically powerful X-rays, much more than researchers would expect, given their size. Astronomers are still trying to pin down what powers these extreme objects, and NGC 7456 contributes a few more examples.
The region around the galaxy’s supermassive black hole is also spectacularly bright and energetic, making NGC 7456 an active galaxy. Whether looking at its core or its outskirts, at visible light or X-rays, this galaxy has something interesting for astronomers to study!
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Sep 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Science Behind the Discoveries
Hubble Design
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Homes in on Galaxy’s Star Formation
This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
Explore More:
Learn more about why astronomers study light in detail
Explore the different wavelengths of light Hubble sees
Explore the Night Sky: Messier 96
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s 35th Anniversary
Hubble’s Night Sky Challenge
View the full article
-
By NASA
4 Min Read Washington State Student Wins 2025 NASA Art Contest
“My Wonders with You” by Dahyun Jung, 2025 NASA Student Art Contest grand prize winner Credits: NASA/Dahyun Jung A Washington state high school student with a passion for art, space exploration, and a curiosity about the possibility of life on other planets earned the grand prize for the 2025 NASA Student Art Contest.
Dahyun Jung’s winning piece, titled “My Wonders with You,” shows a child seated on the roof of a barn, their arm draped around a dog, watching a space shuttle blast off in the distance. The two are joined by three extraterrestrial beings that also watch in awe. Jung was a high school senior during the submission period for the 2025 competition, which was December 1 through December 31, 2024. The theme for the 2025 art contest was “Our Wonder Changes the World.”
“My Wonders with You” by Dahyun Jung, 2025 NASA Student Art Contest grand prize winner
Credit: NASA/Dahyun JungNASA/Dahyun Jung “The theme immediately sparked memories of the moment I first saw a NASA spacecraft launch into space,” Jung said. “That experience filled me with awe and endless questions—especially about how aliens might view our efforts to explore the cosmos. I began imagining what future space missions might look like if we ever made contact with extraterrestrial life. That was the moment everything clicked—the exact moment when imaginations started to fill up the tiny world in my head. I knew exactly what I wanted to draw!”
Jung said art and crafting have been a special part of her life since childhood. She enjoys using a variety of materials to create everything from drawings and paintings to keychains and crochet dolls.
“I’ve always loved drawing, but it was in middle school that I really began to delve into it more deeply,” Jung said. “I see everything that passes through my hands as a form of art.”
I see everything that passes through my hands as a form of art.
Dahyun Jung
2025 NASA Student Art Contest grand prize winner
“A Marsbulous Future” by Chloe Ji, 2025 NASA Student Art Contest First Place Winner, 1st Grade Division
Credit: NASA/Chloe JiNASA/Chloe Ji Jung was one of more than 2,300 kindergarten through 12th grade students from across the United States and its territories who participated in the 2025 art contest, a record-breaking number. Kristina Cors, art contest coordinator at NASA’s Langley Research Center in Hampton, Virginia, said, “This contest gives the students a way to connect their passion for art with science, technology, engineering, and mathematics (STEM) and hopefully inspires them to continue exploring those connections throughout their lives.”
Jung is no stranger to the art contest. She said she first participated in 2022.
“Returning to the contest in 2025 felt both nostalgic and thrilling as I came back with improved techniques, more experience, and a fresh new idea that fit this year’s theme,” she said.
Jung used Procreate, a digital illustration and painting app, to create her award-winning work.
“For this piece, I used my customized brush in Procreate,” Jung said. “The biggest merit of using a digital platform for drawing is the variety of textured brushes they offer. They allowed me to vividly illustrate various elements—like the sky, the rocket’s exhaust plume, hair, and roof—each with its own texture and detail.”
Dahyun Jung, grand prize winner of the 2025 NASA Student Art Contest, holds her winning piece “My Wonders with You.”
Credit: NASA/Dahyun JungNASA/Dahyun Jung Jung’s artwork brought to life her own enthusiasm regarding NASA’s work advancing space exploration, aeronautics, and science.
“I’ve always been fascinated by NASA’s commitment to pushing boundaries—especially in space exploration,” Jung said. “Space feels like an undiscovered world, full of endless possibilities, but only a few have had the chance to access it. In many ways, NASA’s work mirrors how I always push creative boundaries in my own art. I’ve always dreamed of traveling to space, and it’s that sense of wonder that inspired my piece.”
Jung said she hopes her artwork can help to inspire awe and stir imagination in others.
“Changing the World” by Jane Lee, 2025 NASA Student Art Contest First Place Winner, 8th Grade Division
Credit: NASA/Jane LeeNASA/Jane Lee “I want my artwork to be the starting point of all wonders—a spark that takes people back to their childhood, when dreams were bold and limitless,” Jung said. “I hope it rekindles that sense of passion, whatever it may be, and encourages others to dare to dream again.
To view a complete list of winners by grade, please click here.
To view all 2025 art contest entries, please click here.
Brittny McGraw
NASA Langley Research Center
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Aug 25, 2025 Related Terms
Langley Research Center General Explore More
1 min read NASA Implementation of Executive Order 14303
Article 2 hours ago 3 min read Lindy Garay: Supporting Space Station Safety and Success
Article 6 hours ago 3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Observes Noteworthy Nearby Spiral Galaxy
This NASA/ESA Hubble Space Telescope image features the nearby spiral galaxy NGC 2835. ESA/Hubble & NASA, R. Chandar, J. Lee and the PHANGS-HST team This NASA/ESA Hubble Space Telescope image offers a new view of the nearby spiral galaxy NGC 2835, which lies 35 million light-years away in the constellation Hydra (the Water Snake). The galaxy’s spiral arms are dotted with young blue stars sweeping around an oval-shaped center where older stars reside.
This image differs from previously released images from Hubble and the NASA/ESA/CSA James Webb Space Telescope because it incorporates new data from Hubble that captures a specific wavelength of red light called H-alpha. The regions that are bright in H-alpha emission are visible along NGC 2835’s spiral arms, where dozens of bright pink nebulae appear like flowers in bloom. Astronomers are interested in H-alpha light because it signals the presence of several different types of nebulae that arise during different stages of a star’s life. Newborn, massive stars create nebulae called H II regions that are particularly brilliant sources of H-alpha light, while dying stars can leave behind supernova remnants or planetary nebulae that can also be identified by their H-alpha emission.
By using Hubble’s sensitive instruments to survey 19 nearby galaxies, researchers aim to identify more than 50,000 nebulae. These observations will help to explain how stars affect their birth neighborhoods through intense starlight and winds.
Text Credit: ESA/Hubble
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share
Details
Last Updated Aug 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Astronauts
Hubble e-Books
Hubble’s Night Sky Challenge
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.