Jump to content

Driver claims to see an 'eyeball-looking' UFO over Hickman Road Des Moines, Iowa


Recommended Posts

Posted
On June 28, 2022 Jacob Ferrell was driving on the Hickman Road near Merle Hay Road, Iowa when he noticed a strange object in sky and though he doesn't know what to make of it, he describes the object as an' eyeball-looking' UFO. 

ufo%20Des%20Moines,Iowa.jpg

He said "It was kinda just hovering there in the sky just standing still then I was lookin' up the Elon Musk equipment that he's got up there but this was one object by himself, this was just too weird." 

Asking air traffic control if they got any reports, but haven't heard back and the flight radar around Des Moines last night only shows planes. 

They asked the FAA since they have a legitimate task force for UFOs but the FAA said that they only take reports from pilots and referred them to the National UFO Reporting Center, so Ferrel filed a report with them - that will be investigated.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      How can I see the northern lights?

      To see the northern lights, you need to be in the right place at the right time.

      Auroras are the result of charged particles and magnetism from the Sun called space weather dancing with the Earth’s magnetic field. And they happen far above the clouds. So you need clear skies, good space weather at your latitude and the higher, more polar you can be, the better. You need a lot of patience and some luck is always helpful.

      A smartphone can also really help confirm whether you saw a little bit of kind of dim aurora, because cameras are more sensitive than our eyes.

      The best months to see aurorae, statistically, are March and September. The best times to be looking are around midnight, but sometimes when the Sun is super active, it can happen any time from sunset to sunrise.

      You can also increase your chances by learning more about space weather data and a great place to do that is at the NOAA Space Weather Prediction Center.

      You can also check out my project, Aurorasaurus.org, where we have free alerts that are based on your location and we offer information about how to interpret the data. And you can also report and tell us if you were able to see aurora or not and that helps others.

      One last tip is finding a safe, dark sky viewing location with a great view of the northern horizon that’s near you.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Mar 26, 2025 Related Terms
      Science Mission Directorate Auroras Heliophysics Planetary Science Division The Solar System The Sun Explore More
      6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 1 hour ago 6 min read NASA’s Webb Captures Neptune’s Auroras For First Time
      Long-sought auroral glow finally emerges under Webb’s powerful gaze For the first time, NASA’s James…
      Article 7 hours ago 5 min read NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      How Can I See the Northern Lights? We Asked a NASA Expert
    • By NASA
      NASA Technicians do final checks on NASA’s Spirit rover in this image from March 28, 2003. The rover – and its twin, Opportunity – studied the history of climate and water at sites on Mars where conditions may once have been favorable to life. Each rover is about the size of a golf cart and seven times heavier (about 405 pounds or 185 kilograms) than the Sojourner rover launched on the Mars Pathfinder to Mars mission in 1996.
      Spirit and Opportunity were sent to opposite sides of Mars to locations that were suspected of having been affected by liquid water in the past. Spirit was launched first, on June 10, 2003. Spirit landed on the Martian surface on Jan. 3, 2004, about 8 miles (13.4 kilometers) from the planned target and inside the Gusev crater. The site became known as Columbia Memorial Station to honor the seven astronauts killed when the space shuttle Columbia broke apart Feb. 1, 2003, as it returned to Earth. The plaque commemorating the STS-107 Space Shuttle Columbia crew can be seen in the image above.
      Spirit operated for 6 years, 2 months, and 19 days, more than 25 times its original intended lifetime, traveling 4.8 miles (7.73 kilometers) across the Martian plains.
      Image credit: NASA
      View the full article
    • By USH
      On the night of February 23, 2025, residents of Tucumán, Argentina witnessed an astonishing sight during a violent thunderstorm. As a powerful lightning bolt tore through the sky, it briefly illuminated a massive, cigar-shaped object hovering in the storm’s center. 

      Eyewitnesses described the object as dark, elongated, and solid, standing in stark contrast to the swirling storm clouds around it. Unlike a natural weather phenomenon, the shape appeared structured and deliberate, leading many to speculate that it was a UFO of intelligent design, possibly of extraterrestrial origin. 
      It is not clear whether the object was struck by the lightning but there have been reports of UFOs being hit by lightning yet remaining unaffected, suggesting they may either harness or withstand immense energy levels. 
      Some researchers believe that certain UFOs absorb energy from lightning as a means of propulsion or power generation. In past cases, similar sightings have been reported in the presence of electrical storms, further fueling theories that such crafts may recharge their systems using natural energy sources. 
      It is known that theoretical physics explores the concept of extracting energy from electrical phenomena, such as Tesla’s ideas about wireless energy transmission. If an advanced civilization mastered this, lightning could be a viable energy source.
        View the full article
    • By NASA
      5 min read
      Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
      Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe. However, the high energy of ultraviolet photons means that their interaction with the materials that make up an observing instrument are less efficient, resulting in low overall throughput. New approaches in the development of thin film coatings are addressing this shortcoming by engineering the coatings of instrument structures at the atomic scale.
      Researchers at the NASA Jet Propulsion Laboratory (JPL) are employing atomic layer deposition (ALD) and atomic layer etching (ALE) to enable new coating technologies for instruments measuring ultraviolet light. Conventional optical coatings largely rely on physical vapor deposition (PVD) methods like evaporation, where the coating layer is formed by vaporizing the source material and then condensing it onto the intended substrate. In contrast, ALD and ALE rely on a cyclic series of self-limiting chemical reactions that result in the deposition (or removal) of material one atomic layer at a time. This self-limiting characteristic results in a coating or etchings that are conformal over arbitrary shapes with precisely controlled layer thickness determined by the number of ALD or ALE cycles performed.
      The ALD and ALE techniques are common in the semiconductor industry where they are used to fabricate high-performance transistors. Their use as an optical coating method is less common, particularly at ultraviolet wavelengths where the choice of optical coating material is largely restricted to metal fluorides instead of more common metal oxides, due to the larger optical band energy of fluoride materials, which minimizes absorption losses in the coatings. Using an approach based on co-reaction with hydrogen fluoride, the team at JPL has developed a variety of fluoride-based ALD and ALE processes.
      (left) The Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat primary mirror inside the ALD coating facility at JPL, the mirror is 18 cm on the long and is the largest optic coated in this chamber to-date. (right) Flight optic coating inside JPL ALD chamber for Pioneers Aspera Mission. Like SPRITE, the Aspera coating combines a lithium fluoride process developed at NASA GSFC with thin ALD encapsulation of magnesium fluoride at JPL. Image Credit: NASA-JPL In addition to these metal-fluoride materials, layers of aluminum are often used to construct structures like reflective mirrors and bandpass filters for instruments operating in the UV.  Although aluminum has high intrinsic UV reflectance, it also readily forms a surface oxide that strongly absorbs UV light. The role of the metal fluoride coating is then to protect the aluminum surface from oxidation while maintaining enough transparency to create a mirror with high reflectance.
      The use of ALD in this context has initially been pursued in the development of telescope optics for two SmallSat astrophysics missions that will operate in the UV: the Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat mission led by Brian Fleming at the University of Colorado Boulder, and the Aspera mission led by Carlos Vargas at the University of Arizona. The mirrors for SPRITE and Aspera have reflective coatings that utilize aluminum protected by lithium fluoride using a novel PVD processes developed at NASA Goddard Space Flight Center, and an additional very thin top coating of magnesium fluoride deposited via ALD.
      Team member John Hennessy prepares to load a sample wafer in the ALD coating chamber at JPL. Image Credit: NASA JPL The use of lithium fluoride enables SPRITE and Aspera to “see” further into the UV than other missions like NASA’s Hubble Space Telescope, which uses only magnesium fluoride to protect its aluminum mirror surfaces. However, a drawback of lithium fluoride is its sensitivity to moisture, which in some cases can cause the performance of these mirror coatings to degrade on the ground prior to launch. To circumvent this issue, very thin layers (~1.5 nanometers) of magnesium fluoride were deposited by ALD on top of the lithium fluoride on the SPRITE and Aspera mirrors. The magnesium fluoride layers are thin enough to not strongly impact the performance of the mirror at the shortest wavelengths, but thick enough to enhance the stability against humidity during ground phases of the missions. Similar approaches are being considered for the mirror coatings of the future NASA flagship Habitable Worlds Observatory (HWO).
      Multilayer structures of aluminum and metal fluorides can also function as bandpass filters (filters that allow only signals within a selected range of wavelengths to pass through to be recorded) in the UV. Here, ALD is an attractive option due to the inherent repeatability and precise thickness control of the process. There is currently no suitable ALD process to deposit aluminum, and so additional work by the JPL team has explored the development of a custom vacuum coating chamber that combines the PVD aluminum and ALD fluoride processes described above. This system has been used to develop UV bandpass filters that can be deposited directly onto imaging sensors like silicon (Si) CCDs. These coatings can enable such sensors to operate with high UV efficiency, but low sensitivity to longer wavelength visible photons that would otherwise add background noise to the UV observations.
      Structures composed of multilayer aluminum and metal fluoride coatings have recently been delivered as part of a UV camera to the Star-Planet Activity Research CubeSat (SPARCS) mission led by Evgenya Shkolnik at Arizona State University. The JPL-developed camera incorporates a delta-doped Si CCD with the ALD/PVD filter coating on the far ultraviolet channel, yielding a sensor with high efficiency in a band centered near 160 nm with low response to out-of-band light.
      A prototype of a back-illuminated CCD incorporating a multi-layer metal-dielectric bandpass filter coating deposited by a combination of thermal evaporation and ALD. This coating combined with JPL back surface passivation approaches enable the Si CCD to operate with high UV efficiency while rejecting longer wavelength light. Image credit: NASA JPL Next, the JPL team that developed these coating processes plans to focus on implementing a similar bandpass filter on an array of larger-format Si Complementary Metal-Oxide-Semiconductor (CMOS) sensors for the recently selected NASA Medium-Class Explorer (MIDEX) UltraViolet EXplorer (UVEX) mission led by Fiona Harrison at the California Institute of Technology, which is targeted to launch in the early 2030s. 
      For additional details, see the entry for this project on NASA TechPort
      Project Lead: Dr. John Hennessy, Jet Propulsion Laboratory (JPL)
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Jet Propulsion Laboratory Science-enabling Technology Explore More
      5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide


      Article


      1 day ago
      2 min read Hubble Sees a Spiral and a Star


      Article


      4 days ago
      4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill


      Article


      7 days ago
      View the full article
  • Check out these Videos

×
×
  • Create New...