Jump to content

Recommended Posts

Posted
low_keystone.png

Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour – fast enough to escape the star's gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it's not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      UVB-76, widely known by its nickname "The Buzzer," is a mysterious shortwave Russian radio station radio broadcasts in the world. It began broadcasting in the mid-1970s and is still active today, broadcasting cryptic signals at 4625 kHz. 
      This Russian shortwave station usual broadcast consists of a monotonous buzzing tone that occasionally breaks for cryptic voice messages in Russian. The station is widely believed to be operated by the Russian military, possibly as part of the Strategic Rocket Forces’ communication network. 
      The use of shortwave radio enables the signal to travel vast distances, potentially covering all of Russia and extending far beyond its borders. 
      Due to the high transmission power of UVB-76’s antenna, some theorize that the station’s signals could even reach outer space. This possibility opens the door to even more extraordinary speculation: that satellites might receive these signals and relay them to submarines, remote military units, or even unidentified aerial phenomena (UFOs). One theory even posits that UVB-76 could be part of an experimental system designed to scan or communicate with extraterrestrial life. 
      Under normal circumstances, UVB-76’s broadcasts are infrequent and minimal, just the repetitive buzz and the rare coded message. However, something highly unusual happened just ten hours ago. Within a single day, the station transmitted four coded voice messages, an event considered extremely rare and potentially significant. 
      These are the messages: NZHTI - 33 702 - NEPTUN - 66-52-20-75 NZHTI - 8002 361 - TIMUS - 56-85 NZHTI - 7000 0 8002 - LISOPLASH - 67-203-0808-0809 NZHTI - 62 505 - NUTOBAKS - 78 15 92 71 
      While the true meaning of these messages remains classified or unknown, some analysts believe they could be activation codes, operational signals, or test messages for military units. The repeated prefix "NZHTI" could be a call sign or an authentication marker. The names—NEPTUN, TIMUS, LISOPLASH, and NUTOBAKS, might refer to code-named operations, geographic regions, or military assets. The numeric sequences could represent coordinates, timestamps, or identification numbers. 
      Given the timing and unusual frequency of these messages, some suspect that UVB-76 is ramping up activity in preparation for a significant event. While there's no confirmation of any immediate threat, the sudden uptick in coded communications suggests that something serious could be developing. 
      Many experts believe UVB-76 is maintained as a wartime contingency channel, ready to relay commands in the event of nuclear war or a catastrophic loss of national communications. Its consistent presence, even during peacetime, supports the theory that it serves as an emergency or fail-safe communication method for defense forces. 
      The sudden surge of messages within one day suggests that something serious is happening, or about to. But who are they intended for? And more importantly, what comes next?" View the full article
    • By NASA
      Explore This Section Science Science Activation Exploring the Universe Through… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Exploring the Universe Through Sight, Touch, and Sound
      For the first time in history, we can explore the universe through a rich blend of senses—seeing, touching, and hearing astronomical data—in ways that deepen our understanding of space. While three-dimensional (3D) models are essential tools for scientific discovery and analysis, their potential extends far beyond the lab.
      Space can often feel distant and abstract, like watching a cosmic show unfold on a screen light-years away. But thanks to remarkable advances in technology, software, and science, we can now transform telescope data into detailed 3D models of objects millions or even billions of miles away. These models aren’t based on imagination—they are built from real data, using measurements of motion, light, and structure to recreate celestial phenomena in three dimensions.
      What’s more, we can bring these digital models into the physical world through 3D printing. Using innovations in additive manufacturing, data becomes something you can hold in your hands. This is particularly powerful for children, individuals who are blind or have low vision, and anyone with a passion for lifelong learning. Now, anyone can quite literally grasp a piece of the universe.
      These models also provide a compelling way to explore concepts like scale. While a 3D print might be just four inches wide, the object it represents could be tens of millions of billions of times larger—some are so vast that a million Earths could fit inside them. Holding a scaled version of something so massive creates a bridge between human experience and cosmic reality.
      In addition to visualizing and physically interacting with the data, we can also listen to it. Through a process called sonification, telescope data is translated into sound, making information accessible and engaging in a whole new way. Just like translating a language, sonification conveys the essence of astronomical data through audio, allowing people to “hear” the universe.
      To bring these powerful experiences to communities across the country, NASA’s Universe of Learning, in collaboration with the Library of Congress, NASA’s Chandra X-ray Observatory, and the Space Telescope Science Institute, has created Mini Stars 3D Kits that explore key stages of stellar evolution. These kits have been distributed to Library of Congress state hubs across the United States to engage local learners through hands-on and multisensory discovery.
      Each Mini Stars Kit includes:
      Three 3D-printed models of objects within our own Milky Way galaxy: Pillars of Creation (M16/Eagle Nebula) – a stellar nursery where new stars are born Eta Carinae – a massive, unstable star system approaching the end of its life Crab Nebula – the aftermath of a supernova, featuring a dense neutron star at its core Audio files with data sonifications for each object—mathematical translations of telescope data into sound Descriptive text to guide users through each model’s scientific significance and sensory interpretation These kits empower people of all ages and abilities to explore the cosmos through touch and sound—turning scientific data into a deeply human experience. Experience your universe through touch and sound at: https://chandra.si.edu/tactile/ministar.html
      Credits:
      3D Prints Credit: NASA/CXC/ K. Arcand, A. Jubett, using software by Tactile Universe/N. Bonne & C. Krawczyk & Blender
      Sonifications: Dr. Kimberly Arcand (CXC), astrophysicist Dr. Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project)
      3D Model: K. Arcand, R. Crawford, L. Hustak (STScI)
      Photo of NASA’s Universe of Learning (UoL) 3D printed mini star kits sent to the Library of Congress state library hubs. The kits include 3D printed models of stars, sonifications, data converted into sound, and descriptive handouts available in both text and braille. Share








      Details
      Last Updated Apr 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation 3D Resources Astrophysics Manufacturing, Materials, 3-D Printing The Universe Explore More
      5 min read With NASA’s Webb, Dying Star’s Energetic Display Comes Into Full Focus


      Article


      5 hours ago
      4 min read GLOBE Mission Earth Supports Career Technical Education


      Article


      3 days ago
      2 min read Hubble Captures a Star’s Swan Song


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Image: Spying a spiral through a cosmic lens (Webb telescope image) View the full article
    • By NASA
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on the Red Planet to date. The finding, published Monday in the Proceedings of the National Academy of Sciences, suggests prebiotic chemistry may have advanced further on Mars than previously observed.
      Scientists probed an existing rock sample inside Curiosity’s Sample Analysis at Mars (SAM) mini-lab and found the molecules decane, undecane, and dodecane. These compounds, which are made up of 10, 11, and 12 carbons, respectively, are thought to be the fragments of fatty acids that were preserved in the sample. Fatty acids are among the organic molecules that on Earth are chemical building blocks of life.
      Living things produce fatty acids to help form cell membranes and perform various other functions. But fatty acids also can be made without life, through chemical reactions triggered by various geological processes, including the interaction of water with minerals in hydrothermal vents.
      While there’s no way to confirm the source of the molecules identified, finding them at all is exciting for Curiosity’s science team for a couple of reasons.
      Curiosity scientists had previously discovered small, simple organic molecules on Mars, but finding these larger compounds provides the first evidence that organic chemistry advanced toward the kind of complexity required for an origin of life on Mars.
      This graphic shows the long-chain organic molecules decane, undecane, and dodecane. These are the largest organic molecules discovered on Mars to date. They were detected in a drilled rock sample called “Cumberland” that was analyzed by the Sample Analysis at Mars lab inside the belly of NASA’s Curiosity rover. The rover, whose selfie is on the right side of the image, has been exploring Gale Crater since 2012. An image of the Cumberland drill hole is faintly visible in the background of the molecule chains. NASA/Dan Gallagher The new study also increases the chances that large organic molecules that can be made only in the presence of life, known as “biosignatures,” could be preserved on Mars, allaying concerns that such compounds get destroyed after tens of millions of years of exposure to intense radiation and oxidation.
      This finding bodes well for plans to bring samples from Mars to Earth to analyze them with the most sophisticated instruments available here, the scientists say.
      “Our study proves that, even today, by analyzing Mars samples we could detect chemical signatures of past life, if it ever existed on Mars,” said Caroline Freissinet, the lead study author and research scientist at the French National Centre for Scientific Research in the Laboratory for Atmospheres and Space Observations in Guyancourt, France
      In 2015, Freissinet co-led a team that, in a first, conclusively identified Martian organic molecules in the same sample that was used for the current study. Nicknamed “Cumberland,” the sample has been analyzed many times with SAM using different techniques.

      NASA’s Curiosity rover drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Curiosity used the Mars Hand Lens Imager camera on the rover’s arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inches. The depth of the hole is about 2.6 inches. NASA/JPL-Caltech/MSSS Curiosity drilled the Cumberland sample in May 2013 from an area in Mars’ Gale Crater called “Yellowknife Bay.” Scientists were so intrigued by Yellowknife Bay, which looked like an ancient lakebed, they sent the rover there before heading in the opposite direction to its primary destination of Mount Sharp, which rises from the floor of the crater.
      The detour was worth it: Cumberland turns out to be jam-packed with tantalizing chemical clues to Gale Crater’s 3.7-billion-year past. Scientists have previously found the sample to be rich in clay minerals, which form in water. It has abundant sulfur, which can help preserve organic molecules. Cumberland also has lots of nitrates, which on Earth are essential to the health of plants and animals, and methane made with a type of carbon that on Earth is associated with biological processes.
      Perhaps most important, scientists determined that Yellowknife Bay was indeed the site of an ancient lake, providing an environment that could concentrate organic molecules and preserve them in fine-grained sedimentary rock called mudstone.
      “There is evidence that liquid water existed in Gale Crater for millions of years and probably much longer, which means there was enough time for life-forming chemistry to happen in these crater-lake environments on Mars,” said Daniel Glavin, senior scientist for sample return at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a study co-author.
      The recent organic compounds discovery was a side effect of an unrelated experiment to probe Cumberland for signs of amino acids, which are the building blocks of proteins. After heating the sample twice in SAM’s oven and then measuring the mass of the molecules released, the team saw no evidence of amino acids. But they noticed that the sample released small amounts of decane, undecane, and dodecane.
      Because these compounds could have broken off from larger molecules during heating, scientists worked backward to figure out what structures they may have come from. They hypothesized these molecules were remnants of the fatty acids undecanoic acid, dodecanoic acid, and tridecanoic acid, respectively.
      The scientists tested their prediction in the lab, mixing undecanoic acid into a Mars-like clay and conducting a SAM-like experiment. After being heated, the undecanoic acid released decane, as predicted. The researchers then referenced experiments already published by other scientists to show that the undecane could have broken off from dodecanoic acid and dodecane from tridecanoic acid.
      The authors found an additional intriguing detail in their study related to the number of carbon atoms that make up the presumed fatty acids in the sample. The backbone of each fatty acid is a long, straight chain of 11 to 13 carbons, depending on the molecule. Notably, non-biological processes typically make shorter fatty acids, with less than 12 carbons.
      It’s possible that the Cumberland sample has longer-chain fatty acids, the scientists say, but SAM is not optimized to detect longer chains.
      Scientists say that, ultimately, there’s a limit to how much they can infer from molecule-hunting instruments that can be sent to Mars. “We are ready to take the next big step and bring Mars samples home to our labs to settle the debate about life on Mars,” said Glavin.
      This research was funded by NASA’s Mars Exploration Program. Curiosity’s Mars Science Laboratory mission is led by NASA’s Jet Propulsion Laboratory in Southern California; JPL is managed by Caltech for NASA. SAM (Sample Analysis at Mars) was built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. CNES (the French Space Agency) funded and provided the gas chromatograph subsystem on SAM. Charles Malespin is SAM’s principal investigator.
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      NASA, ESA, CSA, STScI Two actively forming stars are responsible for the shimmering hourglass-shaped ejections of gas and dust that gleam in orange, blue, and purple in this representative color image captured by NASA’s James Webb Space Telescope. This star system, called Lynds 483, is named for American astronomer Beverly T. Lynds, who published extensive catalogs of “dark” and “bright” nebulae in the early 1960s.
      The two protostars are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.
      Learn what the incredibly fine details in this image reveal.
      Image credit: NASA, ESA, CSA, STScI
      View the full article
  • Check out these Videos

×
×
  • Create New...