Jump to content

Recommended Posts

Posted
low_keystone.png

Though astronomers have discovered thousands of planets orbiting other stars, very little is known about how they are born. The conventional wisdom is that planets coagulate inside a vast disk of gas and dust encircling newborn stars. But the details of the process are not well understood because it takes millions of years to happen as the disk undergoes numerous changes until it finally dissipates.

The young, nearby star AU Microscopii (AU Mic) is an ideal candidate to get a snapshot of planet birthing because the disk is tilted nearly edge on to our view from Earth. This very oblique perspective offers an opportunity to see structure in the disk that otherwise might go unnoticed. Astronomers are surprised to uncover fast-moving, wave-like features embedded in the disk that are unlike anything ever observed, or even predicted. Whatever they are, these ripples are moving at 22,000 miles per hour – fast enough to escape the star's gravitational pull. This parade of blob-like features stretches farther from the star than Pluto is from our sun. They are so mysterious it's not known if they are somehow associated with planet formation, or some unimagined, bizarre activity inside the disk.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      During a live Fox News broadcast covering the intense Palisades wildfire in California, an unusual event captured viewers' attention. A camera aimed at the blazing inferno recorded a mysterious spherical object emerging suddenly from the middle of the flames. This object moved at a remarkable speed before vanishing over the treetops, leaving many wondering about its origin and purpose. 

      The object does not appear to be debris carried aloft by the fire’s updraft. Its trajectory and speed seem too controlled and deliberate to be a random effect of the wildfire. Additionally, the object shows no signs of explosion or disintegration, characteristics that might be expected if it were merely a piece of material affected by the intense heat. 
      Observers have ruled out common explanations such as birds, planes, or helicopters. The object’s rapid movement and apparent change in direction suggest advanced maneuverability, sparking comparisons to UFOs/UAPs. 
      With the growing number of reported sightings involving drones, orbs, and UFOs, the appearance of this potential UFO or drone in such an environment is especially intriguing. Could this object represent evidence of advanced technology monitoring Earth's natural disasters? Or is it an entirely natural but poorly understood phenomenon?
        View the full article
    • By NASA
      Peering through the window of the SpaceX Dragon Endeavour spacecraft, NASA astronaut Matthew Dominick captured this image on Oct. 7, 2024 of the SpaceX Dragon Freedom spacecraft as vivid green and pink aurora swirled through Earth’s atmosphere while the International Space Station soared 273 miles above the Indian Ocean.
      Visit Dominick’s photography on station to experience the wonders of space through his eyes, enriched by his remarkable journey of orbiting the Earth 3,760 times.
      To see a short-term forecast of the location and intensity of the next aurora check this link: Aurora – 30 Minute Forecast and also NASA’s Guide to Finding and Photographing Auroras.
      Image Credit: NASA/Matthew Dominick

      View the full article
    • By NASA
      Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed. 
      A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
      The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.  
      “We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
      Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks. 
      “It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
      Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth. 
      Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
      The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By USH
      The ongoing mystery surrounding recent drone sightings has become increasingly complex, with conflicting reports making it difficult to draw definitive conclusions. However, a new and intriguing element has emerged alongside these drones sightings: numerous accounts of mysterious orbs, potentially of alien origin, flying at both low and high altitudes. 

      Reports of mysterious orbs have been increasing in recent weeks. These orbs have been sighted at both high altitudes and closer to urban areas. 
      Orb sighting over New Jersey on December 17, 2024Watch video UFO Sightings Daily
      Pilots have reported encounters to air traffic control. Listen to conversations between pilots and traffic control.
          
      And a passenger aboard United Airlines flight UA2359 from Chicago to Newark recently captured footage of these mysterious orbs. The video, shared online by the user “EasilyAmusedEE” on December 16, 2024, shows objects at altitudes between 40,000 and 50,000 feet—far beyond the capabilities of consumer drones. The footage was reportedly taken using an iPhone 16 Pro Max.
         Video plane passenger films unknown orbs.
      About the drone sightings: Meanwhile, eyewitness accounts describe these so-called drones as crafts that emit no noise, suggesting advanced technology. Additionally, there are claims that these crafts seem to intentionally draw attention, as they have reportedly interfered with cars (lamps flickering), electronics, streetlights (lamps flickering), and even fully charged batteries, which are said to be instantly drained in their presence.
         Video shows among other (drone/orb) sightings, cars lamps flickering, streetlights lamps flickering, fully charged batteries drained.
      This surge in Orb sightings raises more questions. Are these orbs extraterrestrial in origin? Could they be deliberately associated with the drone phenomena, or is their timing coincidental? Some suggest the possibility of a false flag operation, hinting at a deeper and potentially misleading agenda by the U.S. government. 
      Whether these drones and Orbs sightings point to advanced human technology, extraterrestrial activity, or a mix of both, one thing is clear: there is something significant going on.View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4389-4390: A Wealth of Ripples, Nodules and Veins
      NASA’s Mars rover Curiosity captured this image showing the patches and aggregations of darker-toned material in its workspace on Dec. 8, 2024. Curiosity acquired this image using its Mast Camera (Mastcam) on sol 4387 — Martian day 4,387 of the Mars Science Laboratory mission — at 17:44:17 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Dec. 9, 2024
      We are continuing to edge our way around the large “Texoli” butte. Much of the bedrock we have been traversing recently looks pretty similar — paler-colored laminated bedrock — but today’s workspace had some interesting features, as did the “drive direction” image, which focuses on the future drive path.
      Close to the rover, we had a wealth of fractures and darker-toned patches. The fractures or veins were too far from the rover for contact science, but ChemCam LIBS was able to target one of the more prominent ones at “Garlock Fault.” Luckily for the contact science instruments (APXS and MAHLI), the darker patches were within reach of the arm. Some of the darker patches were flatter and platy in appearance, whilst others had a more amorphous, blobby shape. Both types come with their own challenges. The flatter ones collect dust on their flat surfaces, so ideally they would be brushed with the DRT (Dust Removal Tool) before we analyze them, but they are often too fragile-looking, and we worry that some of the layers might break off or flake off. The amorphous ones have irregular surfaces, which can collect sand and dust and make getting a good placement tricky.
      However, today we were able to get both APXS and MAHLI on the flattest, most dust-free looking patch at “Cerro Negro.” We will be able to compare the composition of the darker patches and the Garlock Fault vein, and hopefully tease out their relationship.
      Mastcam will take a small mosaic of Garlock Fault and then a larger mosaic on crosscutting veins at “Wildwood Canyon.” This was previously imaged, but from a different angle, so getting a second image will allow us to calculate the orientations on the fractures. Further afield, the “Forest Falls” mosaic looks at an area of dark, raised vein material.
      Looking at the drive direction image, the sedimentologists were very excited to see what appear to be ripple features in the rocks ahead of us, which can tell us a lot about the depositional environment. The Mastcam mosaic “Hahamongna” will image the outcrop we are driving towards (about 30 meters from today’s workspace, or 98 feet), to give context for what we see when we get there. Mastcam will take a second smaller mosaic at “Malibu Creek” midway between where we are today and where we hope to be on Wednesday.
      Looking even further into our future driving path, we will obtain Mastcam and ChemCam RMI images of the top of Mount Sharp and the yardang unit. We have a bit to go before we get there of course, but we will use those images to examine structural relationships and consider the evolution of both — we can test all those theories when we get there!
      We round out the plan with environmental monitoring, as always …and wait eagerly for the next workspace on Wednesday, when we will get up close to those ripples, with luck!
      Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Dec 11, 2024 Related Terms
      Blogs Explore More
      2 min read Looking Out for ‘Lookout Hill’


      Article


      1 day ago
      3 min read Sols 4386-4388: Powers of Ten


      Article


      2 days ago
      3 min read Sols 4384-4385: Leaving the Bishop Quad


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...