Jump to content

Recommended Posts

Posted
On the sea bottom off the coast of central California lies a vast field of mysterious pockmarks. 

Mysterious%20hole%20on%20the%20ocean%20floor%20off%20California's%20coast1.jpg

The field spans about 1,300 square kilometers and there are approximately 5,200 of these strange pits, which on average measure about 175 meters and 5 m deep.

No one knows how these mystery holes appeared, but they likely made their first appearance 400,000 years ago, according to research. 

Coordinates: 33°39'17.76"N 118° 7'5.82"W 

https://www.livescience.com/mystery-california-seabed-pockmarks.html 
Vast field of mysterious, perfectly circular holes dot the seafloor off California's coast.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This team from University High School in Irvine, California, won the 2025 regional Oceans Science Bowl, hosted by NASA’s Jet Propulsion Laboratory. From left: Nethra Iyer, Joanne Chen, Matthew Feng, Avery Hexun, Angelina Yan, and coach David Knight.NASA/JPL-Caltech The annual regional event puts students’ knowledge of ocean-related science to the test in a fast-paced academic competition.
      A team of students from University High School in Irvine earned first place at a fast-paced regional academic competition focused on ocean science disciplines and hosted by NASA’S Jet Propulsion Laboratory in Southern California.
      Eight teams from Los Angeles and Orange counties competed at the March 29 event, dubbed the Los Angeles Surf Bowl. It was the last of about 20 regional competitions held across the U.S. this year in the lead-up to the virtual National Ocean Sciences Bowl finals event in mid-May.
      Santa Monica High School earned second place; Francisco Bravo Medical Magnet High School in Los Angeles came in third. With its victory, University repeated its winning performance from last year. The school also won the JPL-hosted regional Science Bowl earlier this month.
      Teams from all eight schools that participated in the JPL-hosted 2025 regional Ocean Sciences Bowl pose alongside volunteers and coaches.NASA/JPL-Caltech For the Ocean Sciences Bowl, teams are composed of four to five students and a coach. To prepare for the event, team members spend months answering multiple-choice questions with a “Jeopardy!”-style buzzer in just five seconds. Questions come in several categories, including biology, chemistry, geology, and physics along with related geography, technology, history, policy, and current events topics.
      A question in the chemistry category might be “What chemical is the principal source of energy at many of Earth’s hydrothermal vent systems?” (It’s hydrogen sulfide.) Other questions can be considerably more challenging.
      When a team member buzzes in and gives the correct answer to a multiple-choice question, the team earns a bonus question, which allows teammates to consult with one another to come up with an answer. More complicated “team challenge questions” prompt students to work together for a longer period. The theme of this year’s competition is “Sounding the Depths: Understanding Ocean Acoustics.”
      University High junior Matthew Feng, a return competitor, said the team’s success felt like a payoff for hours of studying together, including on weekends. He keeps coming back to the competition partly for the sense of community and also for the personal challenge, he said. “It’s nice to compete and meet people, see people who were here last year,” Matthew added. “Pushing yourself mentally — the first year I was shaking so hard because I wasn’t used to that much adrenaline.”
      Since 2000, JPL’s Public Services Office has coordinated the Los Angeles regional contest with the help of volunteers from laboratory staff and former Ocean Sciences Bowl participants in the local community. JPL is managed for NASA by Caltech.
      The National Ocean Sciences Bowl is a program of the Center for Ocean Leadership at the University Corporation for Atmospheric Research, a nonprofit consortium of colleges and universities focused in part on Earth science-related education.
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-044
      Share
      Details
      Last Updated Mar 31, 2025 Related Terms
      Jet Propulsion Laboratory STEM Engagement at NASA Explore More
      6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
      Article 7 days ago 5 min read NASA Takes to the Air to Study Wildflowers
      Article 1 week ago 6 min read Next-Generation Water Satellite Maps Seafloor From Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      A group of attendees of the joint NASA-USGS workshop, Planetary Subsurface Exploration for Science and Resources, gathers for a photo at NASA’s Ames Research Center on Feb. 11, 2025. Workshop participants discussed observations, technologies, and operations needed to support new economies for terrestrial and off-world resources, including critical minerals.NASA/Brandon Torres Navarrete NASA and the U.S. Geological Survey (USGS) welcomed a community of government, industry, and international partners to explore current technology needs around natural resources – both on Earth and “off world.” During a workshop held in February at NASA’s Ames Research Center in California’s Silicon Valley, participants discussed technologies that will improve the ability to detect, assess, and develop resources, such as critical minerals and water ice to be found on our Moon, other planets and their moons, and asteroids.
      More than 300 attendees, taking part in person and virtually, worked to define the elements needed to find and map resources beyond Earth to support the growing space economy. These include sensors to image the subsurface of planetary bodies, new platforms for cost-effective operations, and technologies that enable new concepts of operation for these systems.
      Scientific studies and measurements of off-world sites will be key to detecting and characterizing resources of interest, creating an important synergy with technology goals and helping to answer fundamental science questions as well.
      The workshop was the third in a series called Planetary Subsurface Exploration for Science and Resources. By leveraging the expertise gained from decades of resource exploration on this planet and that of the space technology and space mission communities, NASA and USGS aim to spark collaboration across industry, government, and academia to develop new concepts and technologies.
      Participants in the NASA-USGS off-world resources workshop take part in a panel review of technology opportunities, Feb. 13, 2025, at NASA’s Ames Research Center. The panelists were Dave Alfano, chief of the Intelligent Systems Division at NASA’s Ames Research Center in California’s Silicon Valley (left); Rob Mueller, a senior technologist and principal investigator in the Exploration Research and Technology Programs Directorate at NASA’s Kennedy Space Center in Florida; Christine Stewart, CEO at Austmine Limited in Australia; Gerald Sanders, in-situ resource utilization system capability lead for NASA’s Space Technology Mission Directorate based at NASA’s Johnson Space Center in Houston; and Jonathon Ralston, Integrated Mining Research Team lead at Australia’s Commonwealth Scientific and Industrial Research Organisation. NASA/Brandon Torres Navarrete
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Peers Deeper into Mysterious Flame Nebula
      This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Credits:
      NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) The Flame Nebula, located about 1,400 light-years away from Earth, is a hotbed of star formation less than 1 million years old. Within the Flame Nebula, there are objects so small that their cores will never be able to fuse hydrogen like full-fledged stars—brown dwarfs.
      Brown dwarfs, often called “failed stars,” over time become very dim and much cooler than stars. These factors make observing brown dwarfs with most telescopes difficult, if not impossible, even at cosmically short distances from the Sun. When they are very young, however, they are still relatively warmer and brighter and therefore easier to observe despite the obscuring, dense dust and gas that comprises the Flame Nebula in this case.
      NASA’s James Webb Space Telescope can pierce this dense, dusty region and see the faint infrared glow from young brown dwarfs. A team of astronomers used this capability to explore the lowest mass limit of brown dwarfs within the Flame Nebula. The result, they found, were free-floating objects roughly two to three times the mass of Jupiter, although they were sensitive down to 0.5 times the mass of Jupiter.
      “The goal of this project was to explore the fundamental low-mass limit of the star and brown dwarf formation process. With Webb, we’re able to probe the faintest and lowest mass objects,” said lead study author Matthew De Furio of the University of Texas at Austin.
      Image A: Flame Nebula: Hubble and Webb Observations
      This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Much of the dark, dense gas and dust, as well as the surrounding white clouds within the Hubble image, have been cleared in the Webb images, giving us a view into a more translucent cloud pierced by the infrared-producing objects within that are young stars and brown dwarfs. Astronomers used Webb to take a census of the lowest-mass objects within this star-forming region.
      The Hubble image on the left represents light at wavelengths of 1.05 microns (filter F105W) as blue, 1.3 microns (F130N) as green, and 1.39 microns (F129M) as red. The two Webb images on the right represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) Smaller Fragments
      The low-mass limit the team sought is set by a process called fragmentation. In this process large molecular clouds, from which both stars and brown dwarfs are born, break apart into smaller and smaller units, or fragments.
      Fragmentation is highly dependent on several factors with the balance between temperature, thermal pressure, and gravity being among the most important. More specifically, as fragments contract under the force of gravity, their cores heat up. If a core is massive enough, it will begin to fuse hydrogen. The outward pressure created by that fusion counteracts gravity, stopping collapse and stabilizing the object (then known as a star). However, fragments whose cores are not compact and hot enough to burn hydrogen continue to contract as long as they radiate away their internal heat.
      “The cooling of these clouds is important because if you have enough internal energy, it will fight that gravity,” says Michael Meyer of the University of Michigan. “If the clouds cool efficiently, they collapse and break apart.”
      Fragmentation stops when a fragment becomes opaque enough to reabsorb its own radiation, thereby stopping the cooling and preventing further collapse. Theories placed the lower limit of these fragments anywhere between one and ten Jupiter masses. This study significantly shrinks that range as Webb’s census counted up fragments of different masses within the nebula.
      “As found in many previous studies, as you go to lower masses, you actually get more objects up to about ten times the mass of Jupiter. In our study with the James Webb Space Telescope, we are sensitive down to 0.5 times the mass of Jupiter, and we are finding significantly fewer and fewer things as you go below ten times the mass of Jupiter,” De Furio explained. “We find fewer five-Jupiter-mass objects than ten-Jupiter-mass objects, and we find way fewer three-Jupiter-mass objects than five-Jupiter-mass objects. We don’t really find any objects below two or three Jupiter masses, and we expect to see them if they are there, so we are hypothesizing that this could be the limit itself.”
      Meyer added, “Webb, for the first time, has been able to probe up to and beyond that limit. If that limit is real, there really shouldn’t be any one-Jupiter-mass objects free-floating out in our Milky Way galaxy, unless they were formed as planets and then ejected out of a planetary system.”
      Image B: Low Mass Objects within the Flame Nebula in Infrared Light
      This near-infrared image of a portion of the Flame Nebula from NASA’s James Webb Space Telescope highlights three low-mass objects, seen in the insets to the right. These objects, which are much colder than protostars, require the sensitivity of Webb’s instruments to detect them. These objects were studied as part of an effort to explore the lowest mass limit of brown dwarfs within the Flame Nebula.
      The Webb images represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, STScI, M. Meyer (University of Michigan) Building on Hubble’s Legacy
      Brown dwarfs, given the difficulty of finding them, have a wealth of information to provide, particularly in star formation and planetary research given their similarities to both stars and planets. NASA’s Hubble Space Telescope has been on the hunt for these brown dwarfs for decades.
      Even though Hubble can’t observe the brown dwarfs in the Flame Nebula to as low a mass as Webb can, it was crucial in identifying candidates for further study. This study is an example of how Webb took the baton—decades of Hubble data from the Orion Molecular Cloud Complex—and enabled in-depth research.
      “It’s really difficult to do this work, looking at brown dwarfs down to even ten Jupiter masses, from the ground, especially in regions like this. And having existing Hubble data over the last 30 years or so allowed us to know that this is a really useful star-forming region to target. We needed to have Webb to be able to study this particular science topic,” said De Furio.
      “It’s a quantum leap in our capabilities between understanding what was going on from Hubble. Webb is really opening an entirely new realm of possibilities, understanding these objects,” explained astronomer Massimo Robberto of the Space Telescope Science Institute.
      This team is continuing to study the Flame Nebula, using Webb’s spectroscopic tools to further characterize the different objects within its dusty cocoon. 
      “There’s a big overlap between the things that could be planets and the things that are very, very low mass brown dwarfs,” Meyer stated. “And that’s our job in the next five years: to figure out which is which and why.”
      These results are accepted for publication in The Astrophysical Journal Letters.
      Image C (Animated): Flame Nebula (Hubble and Webb Comparison)
      This animated image alternates between a Hubble Space Telescope and a James Webb Space Telescope observation of the Flame Nebula, a nearby star-forming nebula less than 1 million years old. In this comparison, three low-mass objects are highlighted. In Hubble’s observation, the low-mass objects are hidden by the region’s dense dust and gas. However, the objects are brought out in the Webb observation due to Webb’s sensitivity to faint infrared light. NASA, ESA, CSA, Alyssa Pagan (STScI) The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Matthew Brown – mabrown@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Learn more about brown dwarf discoveries
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Universe



      Universe Stories



      Stars Stories


      Share








      Details
      Last Updated Mar 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Brown Dwarfs Goddard Space Flight Center Science & Research Star-forming Nebulae The Universe View the full article
    • By USH
      EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner. 

      They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins. 
      Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics. 

      Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose. 
      While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres. 

      Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
        View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-Caltech The farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures.
      Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.
      Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year.
      “The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.”
      The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants.
      The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space.
      Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance.
      Interstellar Science Legacy
      The cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere.
      Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies.
      Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps.
      “The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.”
      Addition Through Subtraction
      Mission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft.
      In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year.  
      Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026.
      With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline.
      Long Distance
      Voyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth.
      In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2.
      “Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.”
      For more information about NASA’s Voyager missions, visit:
      https://science.nasa.gov/mission/voyager
      News Media Contacts
      DC Agle / Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-653-6297 / 626-808-2469
      agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
      2025-032
      Share
      Details
      Last Updated Mar 05, 2025 Related Terms
      Jet Propulsion Laboratory Explore More
      3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
      Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires
      Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...