Jump to content

Comet Interceptor approved for construction


Recommended Posts

Comet Interceptor concept

ESA’s Comet Interceptor mission to visit a pristine comet or other interstellar object just starting its journey into the inner Solar System has been ‘adopted’ this week; the study phase is complete and, following selection of the spacecraft prime contractor, work will soon begin to build the mission.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Augmented reality tools have helped technicians improve accuracy and save time on fit checks for the Roman Space Telescope being assembled at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. In one instance, manipulating a digital model of Roman’s propulsion system into the real telescope structure revealed the planned design would not fit around existing wiring. The finding helped avoid a need to rebuild any components. The R&D team at Goddard working on this AR project suggests broader adoption in the future could potentially save weeks of construction time and hundreds of thousands of dollars. In this photograph from Feb. 29, 2024, at NASA’s Goddard Space Flight Center in Greenbelt, Md., the Roman Space Telescope’s propulsion system is positioned by engineers and technicians under the spacecraft bus. Engineers used augmented reality tools to prepare for the assembly.NASA/Chris Gunn Technicians armed with advanced measuring equipment, augmented reality headsets, and QR codes virtually checked the fit of some Roman Space Telescope structures before building or moving them through facilities at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      “We’ve been able to place sensors, mounting interfaces, and other spacecraft hardware in 3D space faster and more accurately than previous techniques,” said NASA Goddard engineer Ron Glenn. “That could be a huge benefit to any program’s cost and schedule.” 
      Projecting digital models onto the real world allows the technicians to align parts and look for potential interference among them. The AR heads-up display also enables precise positioning of flight hardware for assembly with accuracy down to thousandths of an inch.
      Engineers wearing augmented reality headsets test the placement of a scaffolding design before it is built to ensure accurate fit in the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA Using NASA’s Internal Research and Development program, Glenn said his team keeps finding new ways to improve how NASA builds spacecraft with AR technology in a project aiding Roman’s construction at NASA Goddard. 
      Glenn said the team has achieved far more than they originally sought to prove. “The original project goal was to develop enhanced assembly solutions utilizing AR and find out if we could eliminate costly fabrication time,” he said. “We found the team could do so much more.”
      For instance, engineers using a robotic arm for precision measuring and 3D laser scanning mapped Roman’s complex wiring harness and the volume within the spacecraft structure.  
      “Manipulating the virtual model of Roman’s propulsion assembly into that frame, we found places where it interfered with the existing wiring harness, team engineer Eric Brune said. “Adjusting the propulsion assembly before building it allowed the mission to avoid costly and time-consuming delays.”
      Roman’s propulsion system was successfully integrated earlier this year.
      The Roman Space Telescope is a NASA mission designed to explore dark energy, exoplanets, and infrared astrophysics.
      Equipped with a powerful telescope and advanced instruments, it aims to unravel mysteries of the universe and expand our understanding of cosmic phenomena. Roman is scheduled to launch by May 2027.
      Credit: NASA’s Goddard Space Flight Center
      Download this video in HD formats from NASA Goddard’s Scientific Visualization Studio Considering the time it takes to design, build, move, redesign, and rebuild, Brune added, their work saved many workdays by multiple engineers and technicians.
      “We have identified many additional benefits to these combinations of technologies,” team engineer Aaron Sanford said. “Partners at other locations can collaborate directly through the technicians’ point of view. Using QR codes for metadata storage and document transfer adds another layer of efficiency, enabling quick access to relevant information right at your fingertips. Developing AR techniques for reverse engineering and advanced structures opens many possibilities such as training and documentation.” 
      The technologies allow 3D designs of parts and assemblies to be shared or virtually handed off from remote locations. They also enable dry runs of moving and installing structures as well as help capture precise measurements after parts are built to compare to their designs. 
      Adding a precision laser tracker to the mix can also eliminate the need to create elaborate physical templates to ensure components are accurately mounted in precise positions and orientations, Sanford said. Even details such as whether a technician can physically extend an arm inside a structure to turn a bolt or manipulate a part can be worked out in augmented reality before construction. 
      During construction, an engineer wearing a headset can reference vital information, like the torque specifications for individual bolts, using a hand gesture. In fact, the engineer could achieve this without having to pause and find the information on another device or in paper documents.  
      In the future, the team hopes to help integrate various components, conduct inspections, and document final construction. Sanford said, “it’s a cultural shift. It takes time to adopt these new tools.”  
      “It will help us rapidly produce spacecraft and instruments, saving weeks and potentially hundreds of thousands of dollars,” Glenn said. “That allows us to return resources to the agency to develop new missions.” 
      This project is part of NASA’s Center Innovation Fund portfolio for fiscal year 2024 at Goddard. The Center Innovation Fund, within the agency’s Space Technology Mission Directorate, stimulates and encourages creativity and innovation at NASA centers while addressing the technology needs of NASA and the nation.
      To learn more, visit: https://www.nasa.gov/center-innovation-fund/
      By Karl B. Hille
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAGoddard@NASA_Technology @NASAGoddard@NASA_Technology Instagram logo @NASAGoddard Share
      Details
      Last Updated Jun 20, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Goddard Space Flight Center Space Technology Mission Directorate Technology View the full article
    • By NASA
      NASA has selected small business Firelake-Arrowhead NASA Services Joint Venture of Lawrence, Kansas, to acquire construction management, inspection, surveying, and testing services at NASA centers across the country.
      The Construction Management, Inspection, Surveying, and Testing (CMIST-II) contract was competed as a Small Business 8(a) set-aside, and the maximum contract value is approximately $38.8 million.
      This is a hybrid contract with firm-fixed-price and cost-plus-fixed-fee for base services plus a firm-fixed price indefinite-delivery/indefinite aspect performed at NASA’s Glenn Research Center at Lewis Field in Cleveland and Neil Armstrong Test Facility in Sandusky, Ohio. It also will have a firm-fixed price indefinite-delivery/indefinite-quantity aspect, which can be performed at any NASA center.
      The performance period begins Monday, April 1, and includes a 30-day phase-in period, a two-year base period, a two-year option, a one-year option, and a six-month option, with the potential to extend services through Nov. 30, 2029.
      The contractor will manage construction projects and maintenance tasks from initial concepts through completion, including requirements development, design, construction, commissioning, activation, and turnover. Leidos, Inc., of Reston, Virginia, is a subcontractor.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Jan Wittry
      Glenn Research Center, Cleveland
      216-433-5466
      jan.m.wittry-1@nasa.gov
      Share
      Details
      Last Updated Mar 28, 2024 LocationNASA Headquarters View the full article
    • By NASA
      4 min read
      ESA, NASA Solar Observatory Discovers Its 5,000th Comet
      On March 25, 2024, a citizen scientist in the Czech Republic spotted a comet in an image from the Solar and Heliospheric Observatory (SOHO) spacecraft, which has now been confirmed to be the 5,000th comet discovered using SOHO data. SOHO has achieved this milestone over 28 years in space, even though it was never designed to be a comet hunter.
      The 5,000th comet discovered with the Solar and Heliospheric Observatory (SOHO) spacecraft is noted by a small white box in the upper left portion of this image. A zoomed-in inset shows the comet as a faint dot between the white vertical lines. The image was taken on March 25, 2024, by SOHO’s Large Angle and Spectrometric Coronagraph (LASCO), which uses a disk to block the bright Sun and reveal faint features around it. NASA/ESA/SOHO The comet is a small body made of ice and rock that takes only a few years to orbit the Sun. It belongs to the “Marsden group” of comets. This group is thought to be related to comet 96P/Machholz (which SOHO observes when Machholz passes near the Sun every 5.3 years) and is named for the late scientist Brian Marsden who first recognized the group using SOHO observations. Only about 75 of the 5,000 comets discovered with SOHO belong to the Marsden group.
      A joint mission of ESA (European Space Agency) and NASA, SOHO launched in December 1995 to study the Sun and the dynamics in its outer atmosphere, called the corona. A science instrument on SOHO, called the Large Angle and Spectrometric Coronagraph (LASCO), uses an artificial disk to block the blinding light of the Sun so scientists can study the corona and environment immediately around the Sun.
      This also allows SOHO to do something many other spacecraft cannot – see comets flying close to the Sun, known as “sungrazing” comets or “sungrazers.” Many of these comets only brighten when they’re too close to the Sun for other observatories to see and would otherwise go undetected, lost in the bright glare of our star. While scientists expected SOHO to serendipitously find some comets during its mission, the spacecraft’s ability to spot them has made it the most prolific comet-finder in history – discovering more than half of the comets known today.
      In fact, soon after SOHO launched, people around the world began spotting so many comets in its images that mission scientists needed a way to keep track of them all. In the early 2000s, they launched the NASA-funded Sungrazer Project that allows anyone to report comets they find in SOHO images.
      This animation shows the Solar and Heliospheric Observatory’s 5,000th comet (circled) moving across the field relative to background stars. The images in this sequence were taken with the spacecraft’s Large Angle and Spectrometric Coronagraph (LASCO) instrument. NASA/ESA/SOHO SOHO’s 5,000th comet was found by Hanjie Tan, a Sungrazer Project participant who is originally from Guangzhou, China, and is currently pursuing a doctoral degree in astronomy in Prague, Czech Republic. Tan has been participating in the Sungrazer Project since he was 13 years old and is one of the project’s youngest comet discoverers.
      “Since 2009, I’ve discovered over 200 comets,” Tan said. “I got into the Sungrazer Project because I love looking for comets. It’s really exciting to be the first to see comets get bright near the Sun after they’ve been traveling through space for thousands of years.”
      Most of the 5,000 comets discovered using SOHO have been found with the help of an international cadre of volunteer comet hunters – many with no formal scientific training – participating in the Sungrazer Project.
      “Prior to the launch of the SOHO mission and the Sungrazer Project, there were only a couple dozen sungrazing comets on record – that’s all we knew existed,” said Karl Battams, a space scientist at the U.S. Naval Research Lab in Washington, D.C., and the principal investigator for the Sungrazer Project. “The fact that we’ve finally reached this milestone – 5,000 comets – is just unbelievable to me.”
      SOHO’s 5,000th comet was discovered with the help of volunteers participating in the NASA-funded Sungrazer Project.
      Credit: NASA’s Goddard Space Flight Center The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and groups of comets that orbit the Sun. Comets discovered by the Sungrazer Project have also helped scientists learn more about the Sun, by watching the comets plunge through our star’s atmosphere like small solar probes.
      “The statistics of 5,000 comets, and looking at their orbits and trajectories through space, is a super unique dataset – it’s really valuable science,” Battams said. “It’s a testament to the countless hours the project participants have put into this. We absolutely would never had reached this milestone if it wasn’t for what the project volunteers have done.”
      The Sungrazer Project is one of many opportunities that anyone can get involved with to help make discoveries with NASA during the Heliophysics Big Year, which extends through the end of 2024. Learn more about SOHO, the Sungrazer Project, and other NASA science projects you can participate in:
      NASA SOHO mission website ESA SOHO website The Sungrazer Project Why ESA and NASA’s SOHO Spacecraft Spots So Many Comets 4,000th Comet Discovered by ESA & NASA Solar Observatory NASA Citizen Science by Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 27, 2024 Related Terms
      Citizen Science Comets Heliophysics Skywatching SOHO (Solar and Heliospheric Observatory) The Solar System The Sun Explore More
      5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse


      Article


      2 days ago
      5 min read Sketch the Shape of the Sun for Science During the Solar Eclipse


      Article


      1 week ago
      2 min read NASA Volunteers Find Fifteen Rare “Active Asteroids”


      Article


      2 weeks ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA NASA and the American Center for Manufacturing and Innovation (ACMI) signed an agreement Thursday, Feb. 29 to lease underutilized land in a 240-acre Exploration Park at the agency’s Johnson Space Center in Houston. ACMI will enable the development of facilities to enable commercial and defense space manufacturing.
      The agreement is the second such public/private lease agreement to allow industry and academia to use NASA Johnson land to create facilities for a collaborative development environment that increases commercial access and enhances the United States’ commercial competitiveness in the space and aerospace industries. NASA signed a similar lease with the Texas A&M University System earlier this month.
      Calling it the Space Systems Campus, ACMI plans to incorporate an applied research facility partnered with multiple stakeholders across academia, state and local government, the Department of Defense and regional economic development organizations.
      “For more than 60 years, NASA Johnson has been the hub of human space exploration,” said NASA Johnson Director Vanessa Wyche. “This Space Systems Campus will be a significant component within our objectives for a robust and durable space economy that will benefit not only the nation’s efforts to explore the Moon, Mars and the asteroids, but all of humanity as the benefits of space exploration research roll home to Earth.”
      As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging this unique role and location, Exploration Park will play a key role in helping the human spaceflight community attain U.S. goals for the commercialization and development of a robust space economy by creating an infrastructure that fosters a multi-use environment where academic researchers, aerospace companies and entrepreneurs can collaborate with NASA. Exploration Park will create an infrastructure that allows for a multi-use space hardware development environment, where academic researchers, aerospace companies and entrepreneurs can collaborate on space exploration’s greatest challenges.
      “ACMI Properties will develop this Campus to serve the needs of our future tenants, aerospace industry, the Department of Defense and other significant stakeholders that comprise our ecosystem approach,” said Simon Shewmaker, head of development for ACMI Properties. “Our aim is to support human spaceflight missions for the next 40 years and beyond.”
      NASA issued an announcement for proposals for use of the undeveloped and underutilized land near Saturn Lane on June 9, 2023, and has just completed negotiations with ACMI to formalize the lease agreement. The parcel is outside of Johnson’s controlled access area and adjacent to its main campus. NASA will lease the land for 20 years with two 20-year extention options, for a potential of up to 60 years.
      In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
      Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...