Jump to content

Recommended Posts

Posted
The Pascagoula Abduction was an alleged UFO sighting and alien abduction in 1973, in which Charles Hickson and Calvin Parker claimed they were abducted by aliens while fishing near Pascagoula, Mississippi. 

alien%20abuduction.jpg

On the evening of October 11, 1973, 42-year-old Charles Hickson and 19-year-old Calvin Parker told the Jackson County, Mississippi Sheriff's office they were fishing off a pier on the west bank of the Pascagoula River in Mississippi when they heard a whirring/whizzing sound, saw two flashing blue lights, and observed an oval shaped object 30–40 feet across and 8–10 feet high. 

Parker and Hickson claimed they were "conscious but paralyzed" while three "creatures" with "robotic slit-mouths" and "crab-like pincers" took them aboard the object and subjected them to an examination. 

After so many years of keeping it a secret from his own family, Calvin Parker's declining health has given him a reason to write a book and leave his legacy. Calvin Parker is now ready to tell the story of the event that would change his life forever. 

In a recent interview with Fox10news, Parker said he’s glad the government is starting to talk about UFO’s, but he believes the government is still afraid to tell the truth about UFOs and extraterrestrials, it’s going to cause panic. But Parker thinks if they just tell the truth, people can handle it. Whether it’s good or bad, just tell it like it is. 

There’s even been some politicians who have contacted Parker about this. Parker can’t call them by name because I’ve been sworn to secrecy. But he knows that they exist. he knows that one day, sooner or later, it’s gonna come out.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Defense Secretary Pete Hegseth remarked on the value of the Air Force and Space Force in both deterring and engaging in future military conflicts while speaking at the Department of the Air Force Summit.

      View the full article
    • By USH
      In the depths of the ocean, where countless strange fish and creatures dwell in perpetual darkness, they remain unseen, unless unexpectedly caught. This was the case during an expedition by a Russian deep-sea fisherman, who was stunned when he reeled in a bizarre creature that strikingly resembled an alien’s head. 

      The eerie catch was made by Roman Fedortsov during an expedition in the northern Pacific Ocean. 
      The fisherman shared the video of the strange creature with his followers, with viewers comparing the bulbous fish to an extraterrestrial or even Krang, the villain from Teenage Mutant Ninja Turtles. 
      Fisherman Fedortsov has previously made headlines thanks to other weird and wonderful catches which you can view at Dailymail. 
      Despite its eerie appearance, the fish was not an alien or a mutant but rather a species known as the smooth lumpsucker, a deep-sea fish recognized for its distinctive, gelatinous look.
        View the full article
    • By European Space Agency
      The European Space Agency (ESA) is ready to guide the ESA/NASA Solar Orbiter spacecraft through its closest encounter with Venus so far.
      Today’s flyby will be the first to significantly ‘tilt’ the spacecraft’s orbit and allow it to see the Sun’s polar regions, which cannot be seen from Earth.
      Studying the Sun’s poles will improve our understanding of solar activity, space weather, and the Sun-Earth connection.
      View the full article
    • By USH
      A summer barbecue transformed into a nightmare when lightning split the sky above Somerset, England. Peter Williamson dashed across his rain-soaked lawn to rescue his terrified dog, unaware that his next step would carry him beyond the boundaries of our world. 
      His family watched in horror as a blinding flash illuminated his silhouette against the stormy sky. When their vision cleared, Peter had evaporated into thin air. 

      The police launched a search, but found no footprints, no scorch marks, and no explanation for how a man could disappear from a walled garden. Sixteen witnesses swore they watched him vanish in plain sight. 
      Three days passed before Peter materialized in his backyard, wearing unfamiliar clothes and carrying items that defied explanation. His memories painted a picture of a hospital that both existed and didn't exist, where reality shimmered like heat waves rising from summer pavement. 
      The investigation into his disappearance uncovered something extraordinary: evidence suggesting Peter had slipped through a crack between parallel universes. 
      A "crack between parallel universes" is a metaphorical concept in physics, often used to describe a hypothetical point or region where two separate parallel universes could potentially interact or intersect with each other, allowing for potential travel or communication between them. 
      If such a "crack" existed, it would likely demand extraordinarily extreme conditions, exactly the kind Peter Williamson encountered during his disappearance. 
      His impossible story forces us to question everything we think we know about the nature of reality.
        View the full article
    • By NASA
      Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
      Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
      NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”  
      Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
      Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
      Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
      “Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
      Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
      But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
      An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
      The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
      Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum. 
      Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

      Download high-resolution video and images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jan 16, 2025 Related Terms
      Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...