Jump to content

Frame for Artemis IV


Recommended Posts

Frame_for_Artemis_IV_card_full.jpg Image:

The fourth European Service Module structure to power astronauts on NASA's Orion spacecraft to the Moon is now complete. The structure is seen here at a Thales Alenia Space site in Turin, Italy.

The module is now on its way to Airbus’ clean rooms in Bremen, Germany where engineers will complete the integration and carry out final tests.

As the powerhouse for the Orion spacecraft, the European Service Module provides propulsion and the consumables astronauts need to stay alive.

Much like the load-bearing frame of a car, this structure forms the basis for all further assembly of the spacecraft, including 11 km of wiring, 33 engines, four tanks to hold over 8000 litres of fuel, water and air for astronauts and the seven-metre ‘x-wing’ solar arrays that provide enough electricity to power two households.

The fourth European Service Module is part of the Artemis IV mission that will begin delivering elements of the Gateway, the next human outpost located in lunar orbit.

This includes the International Habitat, or I-Hab, module, built by Thales Alenia on behalf of ESA. It is a pressurised module that will provide living quarters for astronauts visiting the Gateway and include multiple docking ports for berthing vehicles as well as well other modules.

What’s up with the first three European Service Modules?

The first European Service Module is connected with the Orion spacecraft and awaiting launch for Artemis I later this year. The second European Service Module has been formally transferred to NASA and is completing integration at the Operations and Checkout building at Kennedy Space Center. Meanwhile, the third European Service Module continues to be built up in Bremen.

With four European Service Modules already delivered and in production, ESA is ensuring NASA’s Artemis programme continues to develop a sustainable presence on and around the Moon in international partnership.

The countdown to the Moon starts in Europe with 16 companies in ten countries supplying the components that make up humankind’s next generation spacecraft for exploration. Follow the latest on Orion developments on the blog

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of the Mini Potable Water Dispenser, currently in development at NASA’s Marshall Space Flight Center, is displayed alongside various food pouches during a demonstration at NASA’s Johnson Space Center. NASA/David DeHoyos NASA engineers are working hard to ensure no astronaut goes hungry on the Artemis IV mission.
      When international teams of astronauts live on Gateway, humanity’s first space station to orbit the Moon, they’ll need innovative gadgets like the Mini Potable Water Dispenser. Vaguely resembling a toy water soaker, it manually dispenses water for hygiene bags, to rehydrate food, or simply to drink. It is designed to be compact, lightweight, portable and manual, making it ideal for Gateway’s relatively small size and remote location compared to the International Space Station closer to Earth.
      The team at NASA’s Marshall Space Flight Center in Huntsville, Alabama leading the development of the dispenser understands that when it comes to deep space cuisine, the food astronauts eat is so much more than just fuel to keep them alive.
      “Food doesn’t just provide body nourishment but also soul nourishment,” said Shaun Glasgow, project manager at Marshall. “So ultimately this device will help provide that little piece of soul nourishment. After a long day, the crew can float back and enjoy some pasta or scrambled eggs, a small sense of normalcy in a place far from home.”
      As NASA continues to innovate and push the boundaries of deep space exploration, devices like the compact, lightweight dispenser demonstrate a blend of practicality and ingenuity that will help humanity chart its path to the Moon, Mars, and beyond.
      An engineer demonstrates the use of the Mini Potable Water Dispenser by rehydrating a food pouch during a testing session at Johnson Space Center on June 6, 2024. This compact, lightweight dispenser is designed to help astronauts prepare meals in deep space.NASA/David DeHoyos A close-up view of the Mini Potable Water Dispenser prototype during a testing demonstration at NASA’s Johnson Space Center on June 6, 2024.NASA/David DeHoyos NASA food scientists rehydrate a food pouch during a test of the Mini Potable Water Dispenser at Johnson Space Center on June 6, 2024. NASA/David DeHoyos A NASA food scientist captures video of the Mini Potable Water Dispenser during testing at Johnson Space Center.NASA/David DeHoyos Matt Rowell, an engineer from the Marshall Space Flight Center demonstrates the Mini Potable Water Dispenser to NASA food scientists during a testing session.NASA/David DeHoyos Project manager Shaun Glasgow (right) demonstrates the Mini Potable Water Dispenser. NASA/David DeHoyos Brett Montoya, a lead space architect in the Center for Design and Space Architecture at Johnson Space Center, rehydrates a package of food using the Mini Potable Water Dispenser.NASA/David DeHoyos Learn More about Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Sep 04, 2024 EditorBriana R. ZamoraContactBriana R. Zamorabriana.r.zamora@nasa.govLocationJohnson Space Center Related Terms
      Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Johnson Space Center Marshall Space Flight Center Explore More
      2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 2 weeks ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 2 months ago 2 min read Earth to Gateway: Electric Field Tests Enhance Lunar Communication
      Learn how engineers at NASA's Johnson Space Center are using electric field testing to optimize…
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s T-38 jets fly in formation above the Space Launch System rocket on Launch Pad 39B at NASA’s Kennedy Space Center.
      Aircraft designations and passengers:
      901: Chris Condon / Astronaut Zena Cardman.
      902: Astronaut Candidate Nicole Ayers / Astronaut Christina Koch.
      903: Canadian Space Agency Astronaut Jeremy Hansen / Astronaut Drew Morgan.
      904: Chief Astronaut Reid Wiseman / Astronaut Joe Acaba.
      905 (Photo Chase): Astronaut Candidate Jack Hathaway / Josh Valcarcel
      Image Credit: NASA/Josh Valcarcel
      View the full article
    • By NASA
      Crews moved the cone-shaped launch vehicle stage adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge on August 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to NASA Kennedy. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.NASA/Samuel Lott NASA rolled out a key piece of space flight hardware for the SLS (Space Launch System) rocket for the first crewed mission of NASA’s Artemis campaign from Marshall Space Flight Center in Huntsville, Alabama, on Wednesday, Aug. 21 for shipment to the agency’s Kennedy Space Center in Florida. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight around the Moon, slated for 2025.
      “The launch vehicle stage adapter is the largest SLS component for Artemis II that is made at the center,” said Chris Calfee, SLS Spacecraft Payload Integration and Evolution element manager. “Both the adapters for the SLS rocket that will power the Artemis II and Artemis III missions are fully produced at NASA Marshall. Alabama plays a key role in returning astronauts to the Moon.”
      Crews moved the adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge Aug. 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility in New Orleans, where crews will pick up additional SLS hardware for future Artemis missions, before traveling to NASA Kennedy. Once in Florida, the adapter will join the recently delivered core stage. There, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.
      Engineering teams at NASA Marshall are in the final phase of integration work on the launch vehicle stage adapter for Artemis III. The stage adapter is manufactured by prime contractor Teledyne Brown Engineering and the Jacobs Space Exploration Group’s ESSCA (Engineering Services and Science Capability Augmentation) contract using NASA Marshall’s self-reacting friction-stir robotic and vertical weld tools.
      Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      For more on SLS, visit: 
      https://www.nasa.gov/sls
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      jonathan.e.deal@nasa.gov
      View the full article
    • By European Space Agency
      The European Service Module that will power the Orion spacecraft during the Artemis III mission to the Moon is soon on its way to the United States.
      View the full article
  • Check out these Videos

×
×
  • Create New...