Jump to content

Post-flight interview with Matthias Maurer | Cosmic Kiss


Recommended Posts

Post-flight_interview_with_Matthias_Maur Video: 00:07:10

Interview with ESA astronaut Matthias Maurer after the conclusion of his 177-day mission on the International Space Station. During his time in orbit, Matthias supported over 35 European experiments and even more international experiments on board. The outcomes of these experiments will advance our knowledge in areas ranging from human health to materials science, benefiting life on Earth and the future of space exploration. Other highlights included his spacewalk to improve and maintain the Space Station. More about the Cosmic Kiss mission: https://www.esa.int/cosmickiss

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      María Fernanda Barbarena-Arias (left), an associate professor of biology and instructor for the OCEANOS internship, stands on the sand of Playa Melones, Culebra Island, during the field work section of the internship.NASA ARC/Milan Loiacono
      What is your name and your role with OCEANOS?

      My name is María Fernanda Barbarena-Arias. I am an associate professor of biology at the American University of Puerto Rico, Metropolitan Campus. I am also a co-PI in the OCEANOS project, and an instructor and mentor for the students during the internship.

      What is the importance of a program like OCEANOS, especially in Puerto Rico?

      I think it makes a difference for the students because it gives them the opportunity to learn and to become familiar with ocean science, and with coastal and marine natural resources. In particular with OCEANOS one of the great [elements] is that usually marine science is offered in the upper system, which is the public university in Puerto Rico, and OCEANOS is engaging a private university where usually students who cannot enter the public system can begin studying. They have those kind of opportunities, because of OCEANOS.

      What are some ways you’ve seen the students grow over the course of the internship?

      The growth and changes that I’ve seen in students is mostly gaining confidence in the water. I think it’s great! Their first time they are apprehensive, and then as time passes and they engage more into their projects they seem much more familiar with swimming. The students also become more familiar and more confident on their projects. The first time they try to collect data they ask a lot of questions, and then by the third day they already know what to do. They are really empowered and I love that.

      What is something you hope the students take with them after this program?

      I hope that the students learn and become voices to help spread the word about natural sciences: we can study it and work in marine science. Usually in Puerto Rico, natural sciences are seen like a first step when you’re going to be focused in medical science or human health-related disciplines, and so that’s in some ways the tradition; it’s what the public knows. I hope this experience helped the students to spread the word that other kinds of careers are an alternative. I also hope it made them aware that we live in a vulnerable island and that we need to take action to become conscious, and to take action to be ready and to protect our natural resources.

      How did you become involved in marine science, and eventually OCEANOS?

      I actually come from Colombia. I did a bachelors degree in biology there and a minor in entomology, because at that point in my life I wanted to work in agriculture and to do pest control. But then I took a class on insect ecology, and I had to do a project and that’s when I discovered that my passion is ecology. So I applied to the University of Puerto Rico and I came here and did my master’s and my bachelor’s in tropical biology, but actually related to forests. But in the meantime I got married to a Puerto Rican guy, so I decided to stay here.

      Three years later I was able to land a permanent position as a faculty in a private university, and I realized that I didn’t like the way we usually teach science in the classroom. So I began taking trainings and looking for opportunities to mentor students and to teach students in non-traditional settings. I got involved in many projects and I have a strong collaboration with University of Maryland, and we have had these kinds of projects/training/research opportunities for students outside the classroom for many years. And that I why I think one PI called me and invited me to OCEANOS, and here I am.
      Read More Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Earth Science Division Explore More
      3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 28 mins ago 4 min read Interview with OCEANOS Instructor Roy Armstrong
      Article 28 mins ago 6 min read Interview with OCEANOS PI Juan Torres-Pérez
      Article 29 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Samuel Suleiman, an instructor for the OCEANOS internship, teaches students about sargassum and shore ecology on Culebra Island, Puerto Rico, during the fieldwork section of the project. Suleiman is also the Executive Director of Sociedad Ambiente Marino: a Puerto Rican NGO that works in conservation and coral reef restoration.NASA ARC/Milan Loiacono
      What is your name and your role with OCEANOS?

      My name is Samuel Suleiman and I am the Executive Director of Sociedad Ambiente Marino: an NGO in Puerto Rico that has been working for the last 25 years to conserve our coastline and our reefs. During the OCEANOS internship, I am one of the Co-PIs (a co-instructor) for the project, and I’m in charge of the marine ecosystem in Culebra Island.  

      What is the importance of a program like OCEANOS, especially in Puerto Rico?

      The OCEANOS internship is pretty important for those students that don’t have the opportunity to go directly to our natural resources. Puerto Rico is an archipiélago – an island surrounded with other small islands  – and most of the population that we have on the island doesn’t appreciate or understand or protect our resources, because they haven’t had the opportunity to learn about it. OCEANOS provide this experience for these kids and also allows them to grow in different areas; not just in the in the lectures and the information and the marine science data, but also about working together as collaborators.

      What are some ways you’ve seen the students grow over the course of the internship?

      They have become more confident in the water compared to where we started, and they have start collaborating amongst themselves in their different research groups. They have also been changing their minds and attitudes, [which is] what we need for a better Puerto Rico and a better world.

      How did you get into science?

      I started in science because I wanted to be a pediatrician when I was a kid. I started in the Natural Science College at the University of Puerto Rico, then I changed to education in science. And I try to mix together my experience from the past: I almost drowned when I was five years old. Instead of paralyzing myself with fear of the water, I tried to explore, and I have been exploring since then; since I was five years old. Every time that I have the opportunity, I learn something new from the ocean.

      What is something that has been rewarding about working with these students?

      I think that we have to create a new kind of people that protect our resources. People that are willing to take what is needed to make a better world, and a better Puerto Rico.

      What is something you hope the students take with them after this program?

      I hope they feel a sense of belonging with the ocean, our coastline, our beaches, our resources, our reefs, our marine ecosystems. And I hope they can be ambassadors of these places.
      Read More Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Earth Science Division Explore More
      4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 19 mins ago 4 min read Interview with OCEANOS Instructor Roy Armstrong
      Article 28 mins ago 6 min read Interview with OCEANOS PI Juan Torres-Pérez
      Article 29 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      Roy Armstrong, an instructor for the OCEANOS internship and marine sciences professor, pilots a small boat around the cays off the coast of La Parguera, Puerto Rico. NASA ARC/Milan Loiacono
      What is your name and your role with OCEANOS?

      My name is Ray Armstrong and I am a professor in the Department of Marine Sciences of the University of Puerto Rico. I came to be involved in OCEANOS because my ex-student and good friend Juan Torres-Perez, who works at NASA Ames Research Center, came up with this idea of having an internship for Hispanic students in Puerto Rico in the areas of remote sensing and oceanography, as a way of motivating Hispanic students to pursue careers in technology and oceanography.

      What is the importance of a program like OCEANOS, especially in Puerto Rico?

      Puerto Rico is an island and surrounded by ocean, and yet there is a lack of interest in marine sciences and oceanography compared to other disciplines. So we think that we need to promote the study and also conservation of our marine resources, and to use high technology  – such as remote sensing – to study and monitor our oceans and deal with things like water quality and the status of coral reefs, mangroves communities and so forth.

      What is something that has been rewarding about working with these students?

      Mostly the enthusiasm of the students when they go in the water or they look at mangroves for the first time, and learn more about their importance for fisheries and the coastline and so forth. Also sharing some of our stories and experiences in marine sciences, and listening to the students at the end of the program say that because of this experience they would like to pursue careers in marine sciences.

      What has been a challenge of the program?

      Well, one thing is the logistics, because it involves going out in boats in the ocean and there’s a limit of how many students can be in one place or in the water for safety reasons. So that that sets a limitation on the number of students for different activities.

      This year we started a virtual component where we are also teaching a cohort of students and teachers on the use of NASA remote sensing technology in a virtual way and they also participate in some of the projects that the in-person students developed for this project.

      How did you get into science?

      Oh, for me it was simple. I was in love with the ocean since I was a little kid. I had the opportunity of participating in what is called the ‘sea semester’ at Woods Hole Oceanographic Institution, also Boston University where I graduated, and that was a big difference. I immediately realized that that’s what I wanted to do the rest of my life.

      As someone born and raised in Puerto Rico, what are some of the environmental changes you’ve noticed in and around Puerto Rico?

      I was born in Ponce, which is the second largest city in Puerto Rico. I moved to Parguera to study marine sciences at the Department of Marine Sciences in 1976. So basically I have lived here all my life, as a student but also as a professor: this year is my 28th year as a professor of marine sciences.

      There were a lot of changes initially from hurricanes. In the late 1970s a couple of hurricanes destroyed huge areas of very shallow coral reef zones. After that there was a bloom of coral diseases. Through the years that has increased, decimating a lot of the coral populations in this area and in many other areas of the Caribbean and the world. More recently, in the last 5-10 years, more people in boats are coming to this area to a marine reserve, which put constant pressure on the ecosystem. When you have too many boats in one place, too many people in the water, and so forth, we don’t give the ecosystem a time to recover.

      What is the importance of a program like OCEANOS, particularly in Puerto Rico?

      We have seen that many professionals leave the island, in all disciplines. But if we can get younger people to be interested in what we do in the marine sciences in general. they will lhopefully ike to stay in Puerto Rico and work here and also make a difference in protecting our coastal ecosystems.

      What is something that you hope the students take with them when they leave?

      Even now, when the program is still going you can hear them say that the bonds they have established with fellow students and also with mentors and professors is very important. Some have also completely shifted their interest in other disciplines to marine science, or technology in general. And I’m very happy to hear that, because I think we’re having an effect on the on the people that come and the students that participate in this internship.
      Read More Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Division Science & Research Explore More
      4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 19 mins ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 28 mins ago 6 min read Interview with OCEANOS PI Juan Torres-Pérez
      Article 29 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      OCEANOS PI Juan Torres-Pérez, a research scientist at NASA Ames Research Center, holds two pieces of cyanobacteria in the waters of Playa Melones, Culebra Island (Puerto Rico) during the 2024 OCEANOS internship. The cyanobacteria overgrowth is likely caused by an on-land source of pollution leeching into the waters.NASA ARC/Milan Loiacono
      What is your name and your role with OCEANOS?

      My name is Juan Torres-Pérez. I am a research scientist at NASA Ames Research Center in the Earth Sciences division, biospheric sciences branch. I am the PI of OCEANOS, which stands for Ocean Community Engagement and Awareness with NASA Observations and Science for Hispanic/Latino students.

      What is the importance of a program like OCEANOS, particularly in Puerto Rico?

      When you look at the statistics in the in the US, the Hispanic/Latino community is one of the largest minorities across the continental US and jurisdictions like Puerto Rico. But in the geo sciences, the percentage of Hispanic and Latinos is very, very small, including in Puerto Rico. So that’s where we wanted to propose a project like OCEANOS: to engage Hispanic/Latino students  in Puerto Rico in geosciences. Specifically, engaging students in oceanography and the use of remote sensing and NASA data to study coastal marine ecosystems.

      What are some of the activities that the students do as part of the program?

      For example here in Culebra, students study the coral reefs and their different components. What was the condition of the corals per se? The different coral species and their status. They’re also doing beach profiles, to measure whether the beaches have shrunk over time.

      One of the other things that they’re doing is measuring water quality in a few different sites in Culebra [Island] and also in la Parguera on the southwest coast of Puerto Rico,  so they can compare the water quality in the east of Puerto Rico against the Southwest.

      What is something that has been rewarding about working with these students?

      Something rewarding is just to see their faces. Last year when they finished the program and this year as they go through the different experiences, you see how they’re learning. You see how they become engaged and how they participate in the in all the different activities. Most of the evenings, event late at night they’re still working on the data and they want to continue working with the data. So that tells you that this is something that they really enjoy and that they want to do for the future.

      What growth or change do you see in the students over the course of the internship?

      For one example, we’ve had students here that on the very first day told us that they didn’t swim, and we brought them to the water in the first week. We gave them some pointers, we talked to them about safety in the water, and taught them some techniques. And now,  less than three weeks later they’re diving; they’re literally diving in the water collecting data and doing everything that we tell them to do. So that for us is a win-win situation.

      What has been a challenge of the program?

      A challenge for us is more on the on the logistics of bringing in so many students, particularly to the to the southwest coast and also to Culebra Island. These are both big tourism sites in Puerto Rico, which makes it tough for logistics like finding a place for them to stay. In the case of Culebra, we have to buy the ferry tickets to bring them to the island, the transportation and all of that. But at the end of the day it’s so rewarding that it’s definitely worth it.

      What is something that you hope the students take with them when they leave?

      We want the students to become agents of change. That means that they can pass on to their communities, their families, all their relatives, and their schools all the knowledge that they gain through this whole month, and eventually get others enthusiastic about not only engaging in activities like this, but also in preserving the ocean. We have some of the most beautiful coral reefs in the Caribbean here, and they’ve been suffering from a lot of different climate-related and anthropogenic activities. If we get them to tell others that we need to preserve this [marine ecosystem], and then they follow the same steps, that’s the long-term goal for us.

      What are some of the environmental changes you’ve noticed in and around Puerto Rico?

      One example is that nowadays there are several invasive species that have been affecting the coral reefs for at least the past couple decades and some of them even more recently. For instance, the introduction of the lionfish in the Caribbean has devastated some of the most important fish populations, such as groupers and snappers, which affects the whole food web. There are also a number of invasive seagrass species and also some other invertebrates that are literally colonizing all the areas that used to be covered by corals and the local seagrass species, and that disrupts the whole ecosystem.

      Many of them are a consequence of human introduction. Most of these species are actually from the Pacific, and come in or on ships as they go through the Panama canal and eventually they get into the Caribbean. Some of the larvae and such are in there,  and then they find a new place to stay and reproduce.

      Some other species are probably related to climate change: the increase in surface temperatures the changes in currents and such. This is something that’s still being studied by a lot of scientists in the Caribbean and also in the in the Atlantic.

      Do you see any climate change-related effects in Puerto Rico?

      In particular one of the biggest changes that we have seen in terms of climate change and its impact on coral reefs is the increasing surface temperatures. We are literally going through a global coral bleaching event. That has been happening in the last in the last few years and that has affected many of the coral species in the Caribbean and many other parts in the world. Once the coral gets bleached it becomes weakened, and eventually a lot of these colonies die. Once they die they get covered by filamentous algae, and there’s no way back from there. That affects the whole ecosystem, including fisheries and others. Also, some of the coral diseases may also be triggered by these changes related to climate.
      Read More Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      General Ames Research Center's Science Directorate Earth Science Earth Science Division Explore More
      4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 19 mins ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 28 mins ago 4 min read Interview with OCEANOS Instructor Roy Armstrong
      Article 28 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx observatory undergoes integration and testing at BAE Systems in Boulder, Colorado, in April 2024. The space telescope will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors. BAE Systems The space telescope will detect over 100 colors from hundreds of millions of stars and galaxies. Here’s what astronomers will do with all that color.
      NASA’s SPHEREx mission won’t be the first space telescope to observe hundreds of millions of stars and galaxies when it launches no later than April 2025, but it will be the first to observe them in 102 colors. Although these colors aren’t visible to the human eye because they’re in the infrared range, scientists will use them to learn about topics that range from the physics that governed the universe less than a second after its birth to the origins of water on planets like Earth.
      “We are the first mission to look at the whole sky in so many colors,” said SPHEREx Principal Investigator Jamie Bock, who is based jointly at NASA’s Jet Propulsion Laboratory and Caltech, both in Southern California. “Whenever astronomers look at the sky in a new way, we can expect discoveries.”
      Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will collect infrared light, which has wavelengths slightly longer than what the human eye can detect. The telescope will use a technique called spectroscopy to take the light from hundreds of millions of stars and galaxies and separate it into individual colors, the way a prism transforms sunlight into a rainbow. This color breakdown can reveal various properties of an object, including its composition and its distance from Earth.
      NASA’s SPHEREx mission will use spectroscopy — the splitting of light into its component wavelengths — to study the universe. Watch this video to learn more about spectroscopy. NASA’s Goddard Space Flight Center Here are the three key science investigations SPHEREx will conduct with its colorful all-sky map.
      Cosmic Origins
      What human eyes perceive as colors are distinct wavelengths of light. The only difference between colors is the distance between the crests of the light wave. If a star or galaxy is moving, its light waves get stretched or compressed, changing the colors they appear to emit. (It’s the same with sound waves, which is why the pitch of an ambulance siren seems to go up as its approaches and lowers after it passes.) Astronomers can measure the degree to which light is stretched or compressed and use that to infer the distance to the object.
      SPHEREx will apply this principle to map the position of hundreds of millions of galaxies in 3D. By doing so, scientists can study the physics of inflation, the event that caused the universe to expand by a trillion-trillion fold in less than a second after the big bang. This rapid expansion amplified small differences in the distribution of matter. Because these differences remain imprinted on the distribution of galaxies today, measuring how galaxies are distributed can tell scientists more about how inflation worked.
      Galactic Origins
      SPHEREx will also measure the collective glow created by all galaxies near and far — in other words, the total amount of light emitted by galaxies over cosmic history. Scientists have tried to estimate this total light output by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. But these counts may leave out some faint or hidden light sources, such as galaxies too small or too distant for telescopes to easily detect.
      With spectroscopy, SPHEREx can also show astronomers how the total light output has changed over time. For example, it may reveal that the universe’s earliest generations of galaxies produced more light than previously thought, either because they were more plentiful or bigger and brighter than current estimates suggest. Because light takes time to travel through space, we see distant objects as they were in the past. And, as light travels, the universe’s expansion stretches it, changing its wavelength and its color. Scientists can therefore use SPHEREx data to determine how far light has traveled and where in the universe’s history it was released.
      Water’s Origins
      SPHEREx will measure the abundance of frozen water, carbon dioxide, and other essential ingredients for life as we know it along more than 9 million unique directions across the Milky Way galaxy. This information will help scientists better understand how available these key molecules are to forming planets. Research indicates that most of the water in our galaxy is in the form of ice rather than gas, frozen to the surface of small dust grains. In dense clouds where stars form, these icy dust grains can become part of newly forming planets, with the potential to create oceans like the ones on Earth.
      The mission’s colorful view will enable scientists to identify these materials, because chemical elements and molecules leave a unique signature in the colors they absorb and emit.
      Big Picture
      Many space telescopes, including NASA’s Hubble and James Webb, can provide high-resolution, in-depth spectroscopy of individual objects or small sections of space. Other space telescopes, like NASA’s retired Wide-field Infrared Survey Explorer (WISE), were designed to take images of the whole sky. SPHEREx combines these abilities to apply spectroscopy to the entire sky.
      By combining observations from telescopes that target specific parts of the sky with SPHEREx’s big-picture view, scientists will get a more complete — and more colorful — perspective of the universe.
      More About SPHEREx
      SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available.
      For more information about the SPHEREx mission visit:
      https://www.jpl.nasa.gov/missions/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2024-152
      Share
      Details
      Last Updated Oct 31, 2024 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
      5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair
      Stare deeply at these galaxies. They appear as if blood is pumping through the top…
      Article 1 hour ago 3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds
      On an airplane, motions of the air on both small and large scales contribute to…
      Article 21 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...