Jump to content

Recommended Posts

Posted
Using information from ESA’s Swarm satellite mission, scientists have discovered a completely new type of magnetic wave that sweeps across the outermost part of Earth’s outer core every seven years. 

earth%20magnetic%20waves.jpg

This fascinating finding opens a new window into a world we can never see. This mysterious wave oscillates every seven years and propagates westward at up to 1500 kilometers a year. 

Magnetic waves are likely to be triggered by disturbances deep within the Earth's fluid core, possibly related to buoyancy plumes. Each wave is specified by its period and typical length-scale, and the period depends on characteristics of the forces at play. For magneto-Coriolis waves, the period is indicative of the intensity of the magnetic field within the core. 

The research team suggests that other such waves are likely to exist, probably with longer periods – but their discovery relies on more research. 

Read full story at ESA.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The legend of the 13 crystal skulls is one of mystery, intrigue, and ancient wisdom. According to myth, these skulls hold the complete knowledge of our galaxy and the history of the human race. Twelve are said to represent different worlds where intelligent life once thrived, while the thirteenth serves as the key that unites them all. 

      One of the most famous crystal skulls, the Mitchell-Hedges Skull, was discovered in 1927 by archaeologist F.A. Mitchell-Hedges during an excavation at an ancient Mayan site in the dense jungles of Yucatán. This artifact defied conventional understanding of physics and engineering, astonishing scientists at Hewlett-Packard's crystal laboratory, who had never encountered anything like it. 
      Other crystal skulls have been found across Central and South America, Mexico, and beyond. Both the Maya and Aztecs are believed to have used them in sacred rituals and ceremonies. Additionally, various Native American tribes and indigenous cultures worldwide have passed down similar stories, linking these artifacts to ancient Atlantean and Lemurian civilizations. 
      Crystals can transfer, retain, and amplify energy, focusing and transmitting it over great distances to similar crystals. They also have the capacity to store vast amounts of data and knowledge, much like a computer, and can even be used for communication. Could it be, then, that these crystal skulls possess the same mysterious power as the crystal 'Atlantis' sphere discovered by Ray Brown in the submerged ruins of an ancient temple near Bimini? 
      Now, the crystal skulls story spans from ancient Mars to modern-day laboratories, weaving through lost civilizations and CIA psychic programs. As scientists unravel the truth behind these mysterious artifacts, they discover something even more fascinating about the potential of crystal technology.
        View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 
      NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 
      “The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  
      What Are Distributed Space Missions? 
      Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  
      Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  
      Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 
      The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 
      Experimenting With DSA in Low Earth Orbit
      The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  
      “We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  
      The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 
      During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   
      Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 
      “Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit  
      The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   
      The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  
      The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 
      Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read NASA Awards Contract for Airborne Science Flight Services Support
      Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
      Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      STMD Small Spacecraft Technology
      Starling
      View the full article
    • By NASA
      NASA’s UAVSAR airborne radar instrument captured data in fall 2024 showing the mo-tion of landslides on the Palos Verdes Peninsula following record-breaking rainfall in Southern California in 2023 and another heavy-precipitation winter in 2024. Darker red indicates faster motion.NASA Earth Observatory Analysis of data from NASA radar aboard an airplane shows that the decades-old active landslide area on the Palos Verdes Peninsula has expanded.
      Researchers at NASA’s Jet Propulsion Laboratory in Southern California used data from an airborne radar to measure the movement of the slow-moving landslides on the Palos Verdes Peninsula in Los Angeles County. The analysis determined that, during a four-week period in the fall of 2024, land in the residential area slid toward the ocean by as much as 4 inches (10 centimeters) per week.
      Portions of the peninsula, which juts into the Pacific Ocean just south of the city of Los Angeles, are part of an ancient complex of landslides and has been moving for at least the past six decades, affecting hundreds of buildings in local communities. The motion accelerated, and the active area expanded following record-breaking rainfall in Southern California in 2023 and heavy precipitation in early 2024.
      To create this visualization, the Advanced Rapid Imaging and Analysis (ARIA) team used data from four flights of NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that took place between Sept. 18 and Oct. 17. The UAVSAR instrument was mounted to a Gulfstream III jet flown out of NASA’s Armstrong Flight Research Center in Edwards, California, and the four flights were planned to estimate the speed and direction of the landslides in three dimensions.
      In the image above, colors indicate how fast parts of the landslide complex were moving in late September and October, with the darkest reds indicating the highest speeds. The arrows represent the direction of horizontal motion. The white solid lines are the boundaries of the active landslide area as defined in 2007 by the California Geological Survey.
      “In effect, we’re seeing that the footprint of land experiencing significant impacts has expanded, and the speed is more than enough to put human life and infrastructure at risk,” said Alexander Handwerger, the JPL landslide scientist who performed the analysis.
      The insights from the UAVSAR flights were part of a package of analyses by the ARIA team that also used data from ESA’s (the European Space Agency’s) Copernicus Sentinel-1A/B satellites. The analyses were provided to California officials to support the state’s response to the landslides and made available to the public at NASA’s Disaster Mapping Portal.
      Handwerger is also the principal investigator for NASA’s upcoming Landslide Climate Change Experiment, which will use airborne radar to study how extreme wet or dry precipitation patterns influence landslides. The investigation will include flights over coastal slopes spanning the California coastline.
      More About ARIA, UAVSAR
      The ARIA mission is a collaboration between JPL and Caltech, which manages JPL for NASA, to leverage radar and optical remote-sensing, GPS, and seismic observations for science as well as to aid in disaster response. The project investigates the processes and impacts of earthquakes, volcanoes, landslides, fires, subsurface fluid movement, and other natural hazards.
      UAVSAR has flown thousands of radar missions around the world since 2007, studying phenomena such as glaciers and ice sheets, vegetation in ecosystems, and natural hazards like earthquakes, volcanoes, and landslides.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-012
      Share
      Details
      Last Updated Jan 31, 2025 Related Terms
      Earth Science Airborne Science Armstrong Flight Research Center Earth Earth Science Division Explore More
      3 min read NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft
      Article 1 week ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 1 week ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
      The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
      “NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
      In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
      Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
      Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
      These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
      “The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
      While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
      Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
      Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
      Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
      “These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
      For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
      “OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
      NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
      For more information on the OSIRIS-REx mission, visit:
      https://www.nasa.gov/osiris-rex
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Rani Gran
      Goddard Space Flight Center, Greenbelt, Maryland
      301-286-2483
      rani.c.gran@nasa.gov
      Share
      Details
      Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate

      View the full article
    • By USH
      White House Press Secretary Leavitt revealed that the large number of drones spotted over New Jersey, military bases and other parts of the U.S. had been authorized by the Federal Aviation Administration (FAA) for research and various other reasons. 

      She clarified that many of the drones were operated by hobbyists, recreational pilots, and private individuals. However, as public curiosity grew, so did concerns about their true purpose. 
      Leavitt sought to reassure Americans, stating, "This was not the enemy." However, she stopped short of identifying the organizations conducting the research or disclosing the exact nature of the studies. 
      Her vague response has done little to ease speculation, with many questioning why the government failed to disclose this information during the peak of public concern. 
      It seems the U.S. government recently launched a drone replacement program for the 2024–2025 fiscal year, allocating funds to replace noncompliant drones with new, regulation-approved models. 
      Independent reports have linked the mysterious drone sightings to the Department of Homeland Security’s efforts to secure additional funding for drone programs. According to the media outlet Redacted, the widespread concern over these sightings may have been intentionally orchestrated to justify increased budget allocations, a so-called false flag operation. 
      But was this truly a ploy to manipulate public fear in order to push for more drone funding? Would the DOD really need to stage such an event to secure the resources they want? 
      If we talking about these drones, eyewitness reports describe these drones exhibiting flight capabilities far beyond conventional technology. Some accounts suggest that unidentified orbs often accompany them, raising the possibility that the explanation goes beyond mere funding, perhaps something more secretive, or even otherworldly, is at play. 
      BUT, if these government or contractor operated drones are indeed conducting a search, it likely signifies a serious threat. Maybe an impending attack on the power grid? Such an event could lead to a complete blackout, triggering widespread panic and chaos with severe consequences. 
      Moreover, the continuous flickering of streetlights, advertising boards, facade lamps across the U.S. suggests that something is already interfering with the power grid. This phenomenon raises even more concerns, certainly now recent reports indicate that drones have once again appeared over New Jersey, that the underlying issue may be more significant than what has been publicly disclosed by White House Press Secretary Leavitt so far. 
      The above updated map showcasing all reported and recorded locations across the U.S. where flickering streetlights, advertising boards, and facade lamps have been observed. View the full article
  • Check out these Videos

×
×
  • Create New...