Members Can Post Anonymously On This Site
‘Power of partnerships’: SECDEF gives commencement speech to AF Academy’s Class of 2022
-
Similar Topics
-
By NASA
Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact RPS Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Power to Explore Contest FAQ 4 min read
NASA Reveals Semifinalists of Power to Explore Challenge
A word cloud showing “superpowers” of the 45 semifinalists. NASA/David Lam NASA selected 45 student essays as semifinalists of its 2024-2025 Power to Explore Challenge, a national competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions and to dream up how their personal “superpower” would energize their success on their own radioisotope-powered science mission to explore one of the nearly 300 moons of our solar system.
The competition asked students to learn about radioisotope power systems (RPS), a type of “nuclear battery” that NASA uses to explore the harshest, darkest, and dustiest parts of our solar system. RPS have enabled many spacecraft to explore a variety of these moons, some with active volcanoes, methane lakes, and intricate weather patterns similar to Earth. Many of these moons remain a mystery to us.
This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high.
Carl Sandifer II
Program Manager, NASA Radioisotope Power Systems Program
In 275 words or less, students wrote about a mission of their own that would use these space power systems to explore any moon in our solar system and described their own power to achieve their mission goals.
The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest set a record, receiving 2,051 submitted entries from all 50 states, Guam, U.S. Virgin Islands, American Samoa, Northern Mariana Islands, Puerto Rico, and the Department of Defense Education Activity (DoDEA) Overseas.
“This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “It was particularly interesting to see which moons the students selected for their individual essays, and the mysteries they hope to unravel. Their RPS-powered mission concepts always prove to be innovative, and it’s a joy to learn about their ‘superpowers’ that exemplify their path forward as the next generation of explorers.”
Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate, and over 4,859 participants who signed up received an invitation to the Power Up with NASA virtual event. Students learned about what powers the NASA workforce utilizes to dream big and work together to explore. Speakers included Carl Sandifer II, Dr. Wanda Peters, NASA’s deputy associate administrator for programs in the Science Mission Directorate and Dr. Zibi Turtle, principal investigator for NASA’s Dragonfly mission from the John Hopkins Applied Physics Laboratory.
Fifteen national semifinalists in each grade category (45 semifinalists total) have been selected. These participants also will receive a NASA RPS prize pack. Finalists for this challenge will be announced on April 23.
Grades K-4
Vihaan Akhoury, Roseland, NJ Ada Brolan, Somerville, MA Ashwin Cohen, Washington D.C Unnathi Chandra Devavarapu, San Marcos, CA Levi Fisher, Portland, OR Tamanna Ghosh, Orlando, FL Ava Goodison, Arnold, MD Anika Lal, Pflugerville, TX Diya Loganathan, Secaucus, NJ Mini M, Ann Arbor, MI Mark Porter, Temple Hills, MD Rohith Thiruppathy, Canton, MI Zachary Tolchin, Guilford CT Kavin Vairavan, West Windsor Township, NJ Terry Xu, Arcadia, CA Grades 5-8
Chowdhury Wareesha Ali, Solon OH Caydin Brandes, Los Angeles, CA Caleb Braswell, Crestview, FL Lilah Coyan, Spokane, WA Ashwin Dhondi Kubeer, Phoenix, AZ Jonathan Gigi, Cypress, TX Gagan Girish, Portland, OR Maggie Hou, Snohomish, WA Sanjay Koripelli, Louisville, KY Isaiah Muniz, South Orange, NJ Sarabhesh Saravanakumar, Bothell, WA Eliya Schubert, Katonah, NY Gabriel Traska, Fort Woth, TX Jaxon Verbeck, Riggins, ID Krish Vinodhkumar, Monrovia, MD Grades 9-12
Samaria Berry, Kinder, LA David Cai, Saipan, MP Reggie Castro, Saipan, MP Ryan Danyow, Rutland City, VT Faiz Karim, Jericho, NY Sakethram Kuncha, Chantilly, VA Katerina Morin, Miami, FL Emilio Olivares, Edmond, OK Kairat Otorov, Trumbull, CT Dev Rai, Herndon, VA Shaurya Saxena, Irving, TX Saanvi Shah, Bothell, WA Niyant Sithamraju, San Ramon, CA Anna Swenson, Henderson, NV Alejandro Valdez, Orlando, FL About the Challenge
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
Kristin Jansen
NASA’s Glenn Research Center
View the full article
-
By NASA
NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
Keep Exploring Discover More Topics From NASA
International Space Station News
Space Station Research and Technology Tools and Information
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Space Station Research Results
View the full article
-
By Space Force
Space Force senior leaders discussed the future of space operations with an emphasis on the need for technological advancements, international partnerships and scalable capabilities to counter evolving global threats.
View the full article
-
By NASA
Wayne Johnson, who in 2012 earned the highest rank of Fellow at NASA’s Ames Research Center in California, is known worldwide as an expert in rotary wing technology. He was among those who provided help in testing Ingenuity, NASA’s Mars helicopter.NASA / Eric James NASA Ames’ Wayne Johnson Elected to 2025 Class of New Members of the National Academy of Engineering (NAE)
Dr. Wayne R. Johnson, aerospace engineer at Ames Research Center, will be inducted as a new member of the prestigious National Academy of Engineering (NAE), class of 2025, on October 5, 2025, for his 45+ years of contributions to rotorcraft analysis, tiltrotor aircraft development, emerging electric aircraft, and the Mars Helicopter development. NAE members are among the world’s most accomplished engineers from business, academia, and government and are elected by their peers. The full announcement was released to the press on February 11, 2025 from NAE and is at
https://www.nae.edu/19579/31222/20095/327741/331605/NAENewClass2025
View the full article
-
By European Space Agency
Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.
These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.