Members Can Post Anonymously On This Site
‘Power of partnerships’: SECDEF gives commencement speech to AF Academy’s Class of 2022
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Current brake system technology cool disc brakes with air pulled from inside the vehicle’s body to prevent overheating. The channels cut into the exterior of the disc brakes developed by Orbis Brakes draw in external air, which is cooler, ensure the brakes work more efficiently.Credit: Orbis Brakes Inc Just as NASA needs to reduce mass on a spacecraft so it can escape Earth’s gravity, automotive manufacturers work to reduce weight to improve vehicle performance. In the case of brake rotors, lighter is better for a vehicle’s acceleration, reliable stopping, and even gas mileage. Orbis Brakes Inc. licensed a NASA-patented technology to accomplish that and more. This revolutionary brake disc design is at least 42% lighter than conventional cast iron rotors, with performance comparable to carbon-ceramic brakes.
Jonathan Lee, structural materials engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, uses his skills as a mechanical designer backed with material science training on multiple projects including the Space Launch System and the International Space Station. Interested in supporting NASA’s other mission to advance technology to improve life on Earth, he was looking for an innovative way to design a better automobile disc brake.
He started with a single disc with a series of small fins around the central hub. As they spin, these draw in air and push it across the surface of the disc, where the brake pads make contact. This cools the rotor, as well as the brake pads and calipers. He then added several long, curved depressions around the braking surfaces, radiating from the center to create the regular, periodic pattern that gives the new technology, known as Orbis, its PeriodicWave brand name.
The spinning fins and the centrifugal force of the wheel push air into trenches, causing a turbulent airflow that draws away heat. These trenches in the braking surfaces also increase the available surface for air cooling by more than 30% and further reduce the weight of the disc. They also increase friction in the same way that scoring concrete makes steps safer to walk on – the brake pads are less likely to slip, which makes braking more reliable.
The troughs draw away more than just heat, too. Water and road debris getting between the pad and rotor are equally problematic, so the grooves provide a place for the air vortex to push any substance out of the way. A small hole machined at the end of each one creates an opening through which unwanted material can escape.
The expertise developed while solving problems in space has proven useful on Earth, too. Orbis’s brakes are sold as aftermarket modifications for high performance cars like the Ford Mustang, as well as some Tesla models.
Read More Share
Details
Last Updated Dec 12, 2024 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 2 weeks ago 2 min read Super Insulation Requires Super Materials
NASA researchers helped create an insulation coating that blocks heat and sunlight
Article 3 weeks ago 2 min read From Mars Rovers to Factory Assembly Lines
NASA-funded AI technology enabling autonomous rovers and drones now keeps an eye on conveyor belts
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Materials Science
Metals | Semiconductors | Polymers and Organics | Glasses and Ceramics | Granular Materials The Microgravity Materials Science Discipline conducts…
Climate Change
Astromaterials
Inside world-class laboratories, scientists perform research on planetary materials and the space environment to investigate the origin and evolution of…
View the full article
-
By NASA
Terms of Service
NASA’s “MISSION: All Systems GO!” Participant Terms and Conditions
NASA’s MISSION: All Systems GO! is a set of images, videos, certificates and related materials (the “Materials”) intended for use by healthcare providers to assist in reducing the anxieties of children and other patients facing difficult treatment protocols for cancer and other maladies by comparing their challenges with those of NASA astronauts about to embark on a mission to space.
BY UTILIZING NASA’S MISSION: ALL SYSTEMS GO! MATERIALS, THE PARTICIPANT (YOU) AGREES TO THE FOLLOWING TERMS AND CONDITIONS:
“Participant” or “you” means an individual who registers to receive the Materials by [include specific instructions].
“NASA” or “Agency,” as used herein, means the National Aeronautics and Space Administration.
PARTICIPATION
Participation in this program is fully voluntary, and participants are not entitled to compensation, nor will they be considered employees, agents, independent contractors, or consultants of NASA or of the United States (U.S.) Government. Individuals who participate in the event shall engage in their personal capacity only, including identifying themselves by their own names.
NASA’s MISSION: All Systems GO! and use of Materials is intended for entities and facilities located in the United States which are engaged in providing healthcare treatment to the public.
INTELLECTUAL PROPERTY RIGHTS IN MATERIALS
The Materials are owned by NASA, and any use by you must be in strict conformance to the terms hereof and only after registering in the manner identified above. The NASA’s MISSION: All Systems GO! Resources page includes the program information including logos, fonts, and colors you must abide by when using and communicating with other about the NASA’s MISSION: All Systems GO! Materials in any form. Except for those portions of the Materials which are customizable, you shall not alter the Materials, or use them for purposes not related to preparing patients for healthcare treatments. The Materials may only be used in connection with patient experiences and shall not in any way be used by you to promote or advertise your business, facility or services. Except as used in the Materials, you shall not use “National Aeronautics and Space Administration” or “NASA” in a way that creates the impression that a product or service has the authorization, support, sponsorship, or endorsement of NASA. The NASA name and initials may be used by you in connection with the release of general information regarding your own participation in M:ASG!, but not for any promotional or advertising purpose. NASA is not liable for any use or misuse of copyrighted images/video/music in media created by you, and by agreeing to these Terms and Conditions agree to indemnify NASA for any claims or costs arising from any such use.
NASA logo use: NASA has strict restrictions that everyone must follow regarding the use of their NASA Insignia (or “meatball” logo), NASA Logotype (or “worm” logo) and other NASA identifiers. Except as they may appear in the Materials, you do not have permission to use the NASA Insignia, Logotype or other NASA identifiers. Any use of the Materials must conform to NASA’s Media Usage Guidelines (See https://www.nasa.gov/multimedia/guidelines/index.html). If you have any questions about use of Materials, please contact Al Feinberg at Al.feinberg@nasa.gov.
PUBLICITY:
Except where prohibited, registration for NASA’s MISSION: All Systems GO! constitutes your consent for NASA to use your name, the name of your facility or business, place of business, photo or likeness, and/or other publicly available information about you for informational purposes in connection with NASA’s MISSION: All Systems GO! through any form of media, worldwide, without further permission, payment, or consideration.
LIABILITY:
Use of the Materials is at the participant’s own risk. NASA is not responsible for the use of the Materials or the conduct of any activities in connection therewith. You agree to release NASA from and hold NASA harmless against any and all claims arising from or in connection with use of the Materials or participation in NASA’s MISSION: All Systems GO!
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
Workers making way for NASA’s Stennis Space Center near Bay St. Louis, Mississippi, likely did not realize they were building something that would not only withstand the test of time but transcend it.
Mosquitoes, snakes, hurricanes, and intense south Mississippi heat – early crews faced all with a spirit of resilience and adaptability that remains a hallmark characteristic of NASA Stennis six decades later.
“From going to the Moon for the first time and now returning to the Moon, you can trace a straight line of propulsion testing at NASA Stennis,” said Maury Vander, chief of the NASA Stennis Test Operations Division. “We still stand on the front lines of support for this country’s space program.”
For five decades and counting, the versatile NASA Stennis test stands have been used for stage, engine, and component testing on multiple NASA and commercial projects.
A Sept. 25, 2012, aerial image shows the three propulsion test areas at NASA’s Stennis Space Center – the E Test Complex (with 12 active test cell positions capable of component, engine, and stage test activities) in the foreground, the A Test Complex (featuring the Fred Haise, A-2, and A-3 stands for large engine testing) in the middle, and the Thad Cochran Test Stand (B-1/B-2) that can support both engine and stage testing in the background.NASA/Stennis The Fred Haise Test Stand (formerly the A-1 Test Stand), pictured on Oct. 6, 2020, at NASA’s Stennis Space Center, tests RS-25 flight engines to help power NASA’s powerful SLS (Space Launch System). NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-2 Test Stand at NASA’s Stennis Space Center – then-Mississippi Test Facility – on April 17, 1966. Less than a week later, south Mississippi would be fully ushered into the Apollo era with the site’s first-ever hot fire test. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-3 Test Stand at NASA’s Stennis Space Center on March 29, 2013. The test stand area now is under lease to Rocket Lab for commercial operations. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Dec. 31, 2014, during buildout for testing the core stage of NASA’s SLS (Space Launch System) rocket. NASA/Stennis An aerial image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Feb. 22, 2017, following core stage buildout of the test stand for future SLS (Space Launch System) testing. NASA/Stennis Three NASA Stennis stands – Fred Haise (formerly the A-1 Test Stand), A-2, and Thad Cochran (B-1/B-2) – date to the 1960s, when they were built to test Saturn V rocket stages for Apollo missions to the Moon. The Fred Haise and A-2 stand were single-position stands for testing one Saturn V second stage at a time. The Thad Cochran featured two positions – (B-1 and B-2) – that could each house a Saturn V first stage, although only the B-2 position was used during Apollo testing.
When the Apollo Program ended, the Fred Haise, A-2, and Thad Cochran (B-1) stands were modified to test single engines rather than rocket stages. All three were used in subsequent years to test space shuttle main engines and others.
Meanwhile, the Thad Cochran (B-2) stand was maintained for full stage testing. The space shuttle Main Propulsion Test Article was tested on the stand, as was the Common Core Booster for the Delta IV rocket. Most recently, the stand was used to test the first SLS (Space Launch System) stage that helped launch the Artemis I mission in 2022.
In 2024, the Fred Haise Test Stand is dedicated to RS-25 engine testing for NASA’s Artemis initiative. Every RS-25 engine that will help launch an SLS rocket during Artemis will be tested on the stand. The A-2 stand has been leased to Relativity Space, which is modifying it to support stage testing for its new rocket. In 2023, the Thad Cochran (B-1) stand concluded more than 20 years of RS-68 testing for Aerojet Rocketdyne (now known as L3Harris) and now is open for commercial use. The Thad Cochran (B-2) stand is being prepared to test NASA’s new SLS exploration upper stage before it flies on a future Artemis mission.
“When you think about the work at NASA Stennis, this is a place that helps write history,” Vander said. “And in a sense, these test stands are timeless, still operating as designed 60 years after they were built, so there is more history yet to come.”
NASA Stennis also constructed a fourth large test structure in the 2010s. The A-3 Test Stand is uniquely designed to simulate high altitudes up to 100,000 feet for testing engines and stages that need to fire in space. Rocket Lab currently leases the A-3 Test Stand area for construction of its Archimedes Test Complex.
Crews deliver the first RS-25 flight engine, engine No. 2059, to the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Nov. 4, 2015. The engine was tested to certify it for use on NASA’s powerful SLS (Space Launch System) rocket. NASA/Stennis An image shows a space shuttle main engine test on the A-2 Test Stand at NASA’s Stennis Space Center on July 21, 2003. NASA/Stennis The A-3 Test Stand, designed to test fire next-generation engines at simulated altitudes up to 100,000 feet, undergoes an activation test on Feb. 24, 2014.NASA/Stennis NASA Stennis also operates a smaller test area to conduct component, subsystem, and system level testing. The area is now known as the E Test Complex and features four facilities, all developed from the late 1980s to the early 1990s.
Construction of the E-1 Test Stand, then known as the Component Test Facility, began to support a joint project involving NASA and the U.S. Air Force project. Although the project was canceled, a second joint endeavor allowed completion of the test facility.
Development of the E-2 Test Stand, originally known as the High Heat Flux Facility, began to support the National Aerospace Plane project. Following cancelation of the project, the facility was completed to support testing for component and engine development efforts.
An E-3 Test Facility was constructed to support various component and small/subscale engine and booster test projects. Relativity Space leased a partially developed E-4 test area in 2018 and has since completed construction to support its commercial testing.
All in all, the E Test Complex stands feature 12 active cells capable of various component and engine testing. The versatility of the complex infrastructure and test team allows it to support test projects for a range of commercial aerospace companies, large and small. Currently, both E-2 cells 1 and 2 are leased to Relativity Space through 2028.
An aerial image shows the E-1 Test Stand at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-3 test area at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-2 Test Stand (Cell 1) at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis “These facilities really do not exist anywhere else in the United States,” said Kevin Power, assistant director, Office of Project Management in the NASA Stennis Engineering and Test Directorate. “Customers come to us with requirements for certain tests of an article, and we look at what is the best place to test it based on the facility infrastructure. We have completed component level testing, all the way up to full engines.”
The list of companies who have conducted – or are now conducting – propulsion projects in the E Test Complex reads like a who’s who of commercial aerospace leaders.
“The E Complex illustrates the NASA Stennis story,” Power said. “We have very valuable infrastructure and resources, chief of which is the test team, who adapt to benefit NASA and meet the needs of the growing commercial aerospace industry.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
By European Space Agency
A new European Space Agency-backed study shows that the extreme heatwaves of 2023, which fuelled huge wildfires and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change.
View the full article
-
By NASA
Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
“Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission.
One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
Judges Needed
NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
To learn more about the challenge, visit:
https://www.nasa.gov/power-to-explore
-end-
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov
Share
Details
Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.