Jump to content

Swarm unveils magnetic waves deep down


Recommended Posts

Swarm reveals magnetic waves across Earth’s outer core

While volcanic eruptions and earthquakes serve as immediate reminders that Earth’s insides are anything but tranquil, there are also other, more elusive, dynamic processes happening deep down below our feet. Using information from ESA’s Swarm satellite mission, scientists have discovered a completely new type of magnetic wave that sweeps across the outermost part of Earth’s outer core every seven years. This fascinating finding, presented today at ESA’s Living Planet Symposium, opens a new window into a world we can never see.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm surges and widespread impacts on communities in its path. At the same time, NASA’s Atmospheric Waves Experiment, or AWE, recorded enormous swells in the atmosphere that the hurricane produced roughly 55 miles above the ground. Such information helps us better understand how terrestrial weather can affect space weather, part of the research NASA does to understand how our space environment can disrupt satellites, communication signals, and other technology.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      As the International Space Station traveled over the southeastern United States on Sept. 26, 2024, AWE observed atmospheric gravity waves generated by Hurricane Helene as the storm slammed into the gulf coast of Florida. The curved bands extending to the northwest of Florida, artificially colored red, yellow, and blue, show changes in brightness (or radiance) in a wavelength of infrared light produced by airglow in Earth’s mesosphere. The small black circles on the continent mark the locations of cities. To download this video or other versions with alternate color schemes, visit this page. Utah State University These massive ripples through the upper atmosphere, known as atmospheric gravity waves, appear in AWE’s images as concentric bands (artificially colored here in red, yellow, and blue) extending away from northern Florida.
      “Like rings of water spreading from a drop in a pond, circular waves from Helene are seen billowing westward from Florida’s northwest coast,” said Ludger Scherliess, who is the AWE principal investigator at Utah State University in Logan.
      Launched in November 2023 and mounted on the outside of the International Space Station, the AWE instrument looks down at Earth, scanning for atmospheric gravity waves, ripple-like patterns in the air generated by atmospheric disturbances such as violent thunderstorms, tornadoes, tsunamis, wind bursts over mountain ranges, and hurricanes. It does this by looking for brightness fluctuations in colorful bands of light called airglow in Earth’s mesosphere. AWE’s study of these gravity waves created by terrestrial weather helps NASA pinpoint how they affect space weather.
      These views of gravity waves from Hurricane Helene are among the first publicly released images from AWE, confirming that the instrument has the sensitivity to reveal the impacts hurricanes have on Earth’s upper atmosphere.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By European Space Agency
      Image: Moon waves goodbye to Hera View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.
      “We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center.  “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”
      One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.
      The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.
      Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.
      The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.
      Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.
      “Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.
      The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.
      “The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”
      Learn more about the ER-2 aircraft.
      Learn more about the PACE-PAX mission.
      Learn more about the GEMx mission.
      Learn more about NASA’s Airborne Science Program.
      Share
      Details
      Last Updated Oct 24, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth's Atmosphere ER-2 PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
      2 min read Hubble Sees a Celestial Cannonball
      The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks…
      Article 5 hours ago 1 min read PSI Database is Live with New Features to Improve User Experience
      Since its ​launch​​​ in 2014, ​the ​Physical Sciences Informatics (PSI) ​system ​has served as NASA’s…
      Article 22 hours ago 7 min read S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Science Projects
      Aircraft Flown at Armstrong
      Earth Science
      View the full article
    • By NASA
      NASA’s SpaceX Crew-8 members, from left to right, Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, are seen inside the Dragon spacecraft shortly after having landed off the coast of Pensacola, Florida, on Oct. 25, 2024. Credit: NASA/Joel Kowsky NASA’s SpaceX Crew-8 mission successfully splashed down at 3:29 a.m. EDT Friday, off Pensacola, Florida, concluding a nearly eight-month science mission and the agency’s eighth commercial crew rotation mission to the International Space Station.  
      After launching March 3 on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, spent 232 days aboard the space station.
      Recovery teams from NASA and SpaceX quickly secured the spacecraft and assisted the astronauts during exit. The crew now will head to NASA’s Johnson Space Center in Houston, while the Dragon spacecraft will return to SpaceX facilities at Cape Canaveral Space Force Station in Florida for inspection and refurbishment for future missions.
      During their mission, crew members traveled nearly 100 million miles and completed 3,760 orbits around Earth. They conducted new scientific research to advance human exploration beyond low Earth orbit and benefit human life on Earth. Research and technology demonstrations included conducting stem cell research to develop organoid models for studying degenerative diseases, exploring how fuel temperature affects material flammability, and studying how spaceflight affects immune function in astronauts. Their work aims to improve astronaut health during long-duration spaceflights, contributing to critical advancements in space medicine and benefitting humanity.

      Crew-8’s return follows the arrival of NASA’s SpaceX Crew-9 to the orbiting laboratory Sept. 29. These missions are part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111 
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov  
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Oct 25, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Humans in Space International Space Station (ISS) ISS Research View the full article
    • By European Space Agency
      Video: 00:01:20 Approximately 41 000 years ago, Earth’s magnetic field briefly reversed during what is known as the Laschamp event. During this time, Earth’s magnetic field weakened significantly—dropping to a minimum of 5% of its current strength—which allowed more cosmic rays to reach Earth’s atmosphere.
      Scientists at the Technical University of Denmark and the German Research Centre for Geosciences used data from ESA’s Swarm mission, along with other sources, to create a sounded visualisation of the Laschamp event. They mapped the movement of Earth’s magnetic field lines during the event and created a stereo sound version which is what you can hear in the video.
      The soundscape was made using recordings of natural noises like wood creaking and rocks falling, blending them into familiar and strange, almost alien-like, sounds. The process of transforming the sounds with data is similar to composing music from a score.
      Data from ESA’s Swarm constellation are being used to better understand how Earth’s magnetic field is generated. The satellites measure magnetic signals not only from the core, but also from the mantle, crust, oceans and up to the ionosphere and magnetosphere. These data are crucial for studying phenomena such as geomagnetic reversals and Earth’s internal dynamics.
      The sound of Earth’s magnetic field, the first version of the magnetic field sonification produced with Swarm data, was originally played through a 32-speaker system set up in a public square in Copenhagen, with each speaker representing changes in the magnetic field at different places around the world over the past 100 000 years.
      View the full article
  • Check out these Videos

×
×
  • Create New...