Jump to content

High speed UFO Fastwalker filmed from drone


USH

Recommended Posts

A drone owner filmed in the port of San Clemente del Tuyú, Province of Buenos Aires, Argentina a so-called high speed UFO Fastwalker. 

ufo%20fastwalker.jpg

If we zoom in we see that the Fastwalker, which has no wings or visible propulsion, looks like something made up of a construction of tubes attached to the main body.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ESI24 Zou Quadchart
      Min Zou
      University of Arkansas, Fayetteville
      Lunar dust, with its highly abrasive and electrostatic properties, poses serious threats to the longevity and functionality of spacecraft, habitats, and equipment operating on the Moon. This project aims to develop advanced bioinspired surface textures that effectively repel lunar dust, targeting critical surfaces such as habitat exteriors, doors, and windows. By designing and fabricating innovative micro-/nano-hierarchical core-shell textures, we aim to significantly reduce dust adhesion, ultimately enhancing the performance and durability of lunar infrastructure. Using cutting-edge fabrication methods like two-photon lithography and atomic layer deposition, our team will create resilient, dust-repelling textures inspired by natural surfaces. We will also conduct in-situ testing with a scanning electron microscope to analyze individual particle adhesion and triboelectric effects, gaining critical insights into lunar dust behavior on engineered surfaces. These findings will guide the development of durable surfaces for long-lasting, low-maintenance lunar equipment, with broader applications for other dust-prone environments.
      Back to ESI 2024
      Keep Exploring Discover More Topics From STRG
      Space Technology Mission Directorate
      STMD Solicitations and Opportunities
      Space Technology Research Grants
      About STRG
      View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
      In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
      Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
      “The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
      Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
      “One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
      “I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
      The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
      Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
      3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.
      “We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center.  “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”
      One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.
      The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.
      Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.
      The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.
      Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.
      “Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.
      The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.
      “The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”
      Learn more about the ER-2 aircraft.
      Learn more about the PACE-PAX mission.
      Learn more about the GEMx mission.
      Learn more about NASA’s Airborne Science Program.
      Share
      Details
      Last Updated Oct 24, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth's Atmosphere ER-2 PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
      2 min read Hubble Sees a Celestial Cannonball
      The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks…
      Article 5 hours ago 1 min read PSI Database is Live with New Features to Improve User Experience
      Since its ​launch​​​ in 2014, ​the ​Physical Sciences Informatics (PSI) ​system ​has served as NASA’s…
      Article 22 hours ago 7 min read S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Science Projects
      Aircraft Flown at Armstrong
      Earth Science
      View the full article
  • Check out these Videos

×
×
  • Create New...