Jump to content

Recommended Posts

Posted
Juice_spacecraft_fully_integrated_and_re Video: 00:04:49

“ESA’s Juice mission has entered its final phase of development, with the spacecraft moving to an Airbus Defence & Space facility in Toulouse, France, for the next round of testing. The spacecraft has been fully integrated, and these tests will be done in full flight configuration, as Juice is scheduled for launch from Europe’s Spaceport in Kourou, French Guiana, in April 2023

The Juice mission is a perfect example of collaboration between several national space agencies and European industry. Its objective is to explore the gas giant Jupiter, its environment, and three of its moons: Europa, Callisto and Ganymede. By studying this planetary system, ESA hopes to learn more about the icy worlds around Jupiter and the origins and possibility of life in our Universe

 This report includes interviews of:

  • Manuela Baroni, Juice AIT & Launcher Interface Engineer, ESA (English & Italian)
  • Cyril Cavel, Juice Project Manager, Airbus Defence & Space (English)

Access the related broadcast quality material.

Download the animation Juice’s journey and Jupiter system tour.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
      When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
      This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
      The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
      “If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
      To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
      Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robotics teams gather on the main floor of the 2025 Aerospace Valley FIRST Robotics Competition at Eastside High School in Lancaster, California, adjusting and testing the functions of their robots, on April 3, 2025NASA/Genaro Vavuris A group of attendees to the 2025 Aerospace Valley FIRST Robotics Competition gather outside Eastside High School’s gymnasium in Lancaster, California, to watch an F/A-18 from NASA’s Armstrong Flight Research Center, in Edwards, California, fly over the school to kick off the competition, on April 3, 2025.NASA/Genaro Vavuris Jose Vasquez, engineering technician at NASA’s Armstrong Flight Research Center at Edwards, California, machines parts for a robot inside NASA’s mobile machine shop at the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris Students from Eagle Robotics, Team 399, supported by volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, adjust their robot during the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris When young minds come together to test their knowledge and creativity in technology and innovation, the results are truly inspiring. In its sixth year, Aerospace Valley Regional FIRST Robotics Competition at East High School in Lancaster, California, proved to be another success. During three action-packed days, hundreds of students from around the world showcased their skills in building and programming robots designed to tackle real-world challenges. Volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, played a key role, mentoring students and sharing expertise to guide the next generation of engineers.
      The Aerospace Valley Regional was started with NASA’s support through the Robotics Alliance Project, which has helped expand robotics programs nationwide. As part of the project, NASA Armstrong supports five local teams and fosters innovation and mentorship for young minds. “It’s more than just a game – it’s a launchpad for future innovators,” said David Voracek, NASA Armstrong’s chief technologist, who has volunteered for 20 years and is the primary logistics manager.
      Brad Flick, NASA Armstrong center director, toured the venue and talked to students, highlighting NASA’s continued commitment to inspiring the next generation of engineers and innovators. The event kicked off with an exciting F/A-18 flyover by NASA Armstrong research test pilots Nils Larson and James Less.
      Throughout the competition, NASA volunteers – judges, scorers, and machinists – offered guidance and ensured smooth operations. The mobile shop supported students by repairing and fabricating parts for their robots, completing 79 jobs during the event. “Almost everything we do needs to get done in minutes,” says Jose Vasquez, volunteer, and engineering technician at NASA Armstrong’s fabrication lab, who volunteered at the event.
      Beyond the competition, students engaged with industry professionals and explored career opportunities. “They don’t just build robots; they build confidence, resilience, and real-world skills alongside mentors who inspire them and volunteers who make it all possible,” Voracek said. This event showcased the talent, determination, and creativity that will shape the future of technology and innovation.
      NASA’s Robotics Alliance Project provides grants for high school teams across the country and supports FIRST Robotics competitions, encouraging students to pursue STEM careers.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.gov Related Terms
      Aeronautics Armstrong Flight Research Center Learning Resources Next Gen STEM Explore More
      3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 17 hours ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 1 day ago 5 min read NASA Announces 31st Human Exploration Rover Challenge Winners
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
      Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
      “The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
      Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
      The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
      “The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
      Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
      “Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
      Share
      Details
      Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Johns Hopkins APL/Princeton/Ed Whitman NASA’s IMAP (Interstellar Mapping and Acceleration Probe) is loaded into the X-ray and Cryogenic Facility (XRCF) thermal vacuum chamber at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in this photo from March 20, 2025. There, the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September 2025.
      Image credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman
      View the full article
    • By NASA
      NASA’s Lucy spacecraft is 6 days and less than 50 million miles (80 million km) away from its second close encounter with an asteroid; this time, the small main belt asteroid Donaldjohanson.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio.
      NASA/Dan Gallagher This upcoming event represents a comprehensive “dress rehearsal” for Lucy’s main mission over the next decade: the exploration of multiple Trojan asteroids that share Jupiter’s orbit around the Sun. Lucy’s first asteroid encounter – a flyby of the tiny main belt asteroid Dinkinesh and its satellite, Selam, on Nov. 1, 2023 – provided the team with an opportunity for a systems test that they will be building on during the upcoming flyby.
      Lucy’s closest approach to Donaldjohanson will occur at 1:51pm EDT on April 20, at a distance of 596 miles (960 km). About 30 minutes before closest approach, Lucy will orient itself to track the asteroid, during which its high-gain antenna will turn away from Earth, suspending communication. Guided by its terminal tracking system, Lucy will autonomously rotate to keep Donaldjohanson in view. As it does this, Lucy will carry out a more complicated observing sequence than was used at Dinkinesh. All three science instruments – the high-resolution greyscale imager called L’LORRI, the color imager and infrared spectrometer called L’Ralph, and the far infrared spectrometer called L’TES – will carry out observation sequences very similar to the ones that will occur at the Trojan asteroids.
      However, unlike with Dinkinesh, Lucy will stop tracking Donaldjohanson 40 seconds before the closest approach to protect its sensitive instruments from intense sunlight.
      “If you were sitting on the asteroid watching the Lucy spacecraft approaching, you would have to shield your eyes staring at the Sun while waiting for Lucy to emerge from the glare. After Lucy passes the asteroid, the positions will be reversed, so we have to shield the instruments in the same way,” said encounter phase lead Michael Vincent of Southwest Research Institute (SwRI) in Boulder, Colorado. “These instruments are designed to photograph objects illuminated by sunlight 25 times dimmer than at Earth, so looking toward the Sun could damage our cameras.” 
      Fortunately, this is the only one of Lucy’s seven asteroid encounters with this challenging geometry. During the Trojan encounters, as with Dinkinesh, the spacecraft will be able to collect data throughout the entire encounter.
      After closest approach, the spacecraft will “pitch back,” reorienting its solar arrays back toward the Sun. Approximately an hour later, the spacecraft will re-establish communication with Earth.
      “One of the weird things to wrap your brain around with these deep space missions is how slow the speed of light is,” continued Vincent. “Lucy is 12.5 light minutes away from Earth, meaning it takes that long for any signal we send to reach the spacecraft. Then it takes another 12.5 minutes before we get Lucy’s response telling us we were heard. So, when we command the data playback after closest approach, it takes 25 minutes from when we ask to see the pictures before we get any of them to the ground.”
      Once the spacecraft’s health is confirmed, engineers will command Lucy to transmit the science data from the encounter back to Earth, which is a process that will take several days.
      Donaldjohanson is a fragment from a collision 150 million years ago, making it one of the youngest main belt asteroids ever visited by a spacecraft. 
      “Every asteroid has a different story to tell, and these stories weave together to paint the history of our solar system,” said Tom Statler, Lucy mission program scientist at NASA Headquarters in Washington. “The fact that each new asteroid we visit knocks our socks off means we’re only beginning to understand the depth and richness of that history. Telescopic observations are hinting that Donaldjohanson is going to have an interesting story, and I’m fully expecting to be surprised – again.”
      NASA’s Goddard Space Flight Center in Greenbelt, Maryland, designed and built the L’Ralph instrument and provides overall mission management, systems engineering and safety and mission assurance for Lucy. Hal Levison of SwRI’s office in Boulder, Colorado, is the principal investigator. SwRI, headquartered in San Antonio, also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the original orbital trajectory and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University in Tempe, Arizona, designed and build the L’TES (Lucy Thermal Emission Spectrometer) instrument. Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      By Katherine Kretke, Southwest Research Institute

      Media Contact:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Apr 14, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Lucy Goddard Space Flight Center Planetary Science Explore More
      4 min read New Modeling Assesses Age of Next Target Asteroid for NASA’s Lucy
      Article 4 weeks ago 3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
      Article 2 months ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
      Article 2 years ago View the full article
  • Check out these Videos

×
×
  • Create New...