Jump to content

James Webb telescope captured a ring shaped object in the large Magellanic Cloud


USH

Recommended Posts

Here in this video we have compared Webb's image with an similar image of Hubble telescope. 

Images captured by Webb telescope shows most distant stars and galaxies in the large Magellanic Cloud. In the image below we can see a ring shaped object in the stars forming region of large Magellanic Cloud. 

webb%20telescope.jpg

Previously one such object was seen by the Hubble Telescope and when zooming into a rich star-birth region of the large Magellanic Cloud, we can see in the image below a similar ring shaped object which is the remnant of a supernova named Supernova 1987A captured by Hubble. 

Hubble%20telescope.jpg

May be the ring shaped object seen in the Webb's image would be something else.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark
      The galaxy cluster MACS-J0417.5-1154. Full image below. Credits:
      NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). It’s 7 billion years ago, and the universe’s heyday of star formation is beginning to slow. What might our Milky Way galaxy have looked like at that time? Astronomers using NASA’s James Webb Space Telescope have found clues in the form of a cosmic question mark, the result of a rare alignment across light-years of space.
      “We know of only three or four occurrences of similar gravitational lens configurations in the observable universe, which makes this find exciting, as it demonstrates the power of Webb and suggests maybe now we will find more of these,” said astronomer Guillaume Desprez of Saint Mary’s University in Halifax, Nova Scotia, a member of the team presenting the Webb results.
      Image A: Lensed Question Mark (NIRCam)
      The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. Active star formation, and the face-on galaxy’s remarkably intact spiral shape, indicate that these galaxies’ interaction is just beginning. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). While this region has been observed previously with NASA’s Hubble Space Telescope, the dusty red galaxy that forms the intriguing question-mark shape only came into view with Webb. This is a result of the wavelengths of light that Hubble detects getting trapped in cosmic dust, while longer wavelengths of infrared light are able to pass through and be detected by Webb’s instruments.
      Astronomers used both telescopes to observe the galaxy cluster MACS-J0417.5-1154, which acts like a magnifying glass because the cluster is so massive it warps the fabric of space-time. This allows astronomers to see enhanced detail in much more distant galaxies behind the cluster. However, the same gravitational effects that magnify the galaxies also cause distortion, resulting in galaxies that appear smeared across the sky in arcs and even appear multiple times. These optical illusions in space are called gravitational lensing.
      The red galaxy revealed by Webb, along with a spiral galaxy it is interacting with that was previously detected by Hubble, are being magnified and distorted in an unusual way, which requires a particular, rare alignment between the distant galaxies, the lens, and the observer — something astronomers call a hyperbolic umbilic gravitational lens. This accounts for the five images of the galaxy pair seen in Webb’s image, four of which trace the top of the question mark. The dot of the question mark is an unrelated galaxy that happens to be in the right place and space-time, from our perspective.
      Image B: Hubble and Webb Side by Side
      Image Before/After In addition to producing a case study of the Webb NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument’s ability to detect star formation locations within a galaxy billions of light-years away, the research team also couldn’t resist highlighting the question mark shape. “This is just cool looking. Amazing images like this are why I got into astronomy when I was young,” said astronomer Marcin Sawicki of Saint Mary’s University, one of the lead researchers on the team. 
      “Knowing when, where, and how star formation occurs within galaxies is crucial to understanding how galaxies have evolved over the history of the universe,” said astronomer Vicente Estrada-Carpenter of Saint Mary’s University, who used both Hubble’s ultraviolet and Webb’s infrared data to show where new stars are forming in the galaxies. The results show that star formation is widespread in both. The spectral data also confirmed that the newfound dusty galaxy is located at the same distance as the face-on spiral galaxy, and they are likely beginning to interact.
      “Both galaxies in the Question Mark Pair show active star formation in several compact regions, likely a result of gas from the two galaxies colliding,” said Estrada-Carpenter. “However, neither galaxy’s shape appears too disrupted, so we are probably seeing the beginning of their interaction with each other.”
      “These galaxies, seen billions of years ago when star formation was at its peak, are similar to the mass that the Milky Way galaxy would have been at that time. Webb is allowing us to study what the teenage years of our own galaxy would have been like,” said Sawicki.
      The Webb images and spectra in this research came from the Canadian NIRISS Unbiased Cluster Survey (CANUCS). The research paper is published in the Monthly Notices of the Royal Astronomical Society.
      Image C: Wide Field – Lensed Question Mark (NIRCam)
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Leah Ramsey – lramsey@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: Gravity – Nature’s Magnifying Glass
      VIDEO: What happens when galaxies collide?

      ARTICLE: More about Galaxy Evolution

      VIDEO: Learn more about Galactic Collisions
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      The stars in the big Wyoming skies inspired Aaron Vigil as a child to dream big. Today, he’s a mechanical engineer working on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope at Goddard.
      Name: Aaron Vigil
      Title: Mechanical Engineer
      Formal Job Classification: Aerospace Technology, Flight Structures
      Organization: Mechanical Engineering, Engineering and Technology Directorate (Code 543)
      Aaron Vigil is a mechanical engineer at Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Aaron Vigil What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I currently work on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope. I support daily integration and testing tasks related to the SASS assembly. I spend a lot of my time working with Goddard mechanical technicians and other engineers to execute test plans and procedures to assemble, test, and integrate SASS hardware.   
      What interests you about space?
      I grew up in rural Wyoming. I did a lot of hiking, hunting, fishing, and camping. We were on the mountains constantly. I remember being up at night, sitting around the campfire with my family, looking up at the stars. 
      I was fascinated and captivated! I wanted to learn more about space.
      “I currently work on the Solar Array Sun Shield (SASS) for the Nancy Grace Roman Space Telescope,” said Aaron. “I support daily integration and testing tasks related to the SASS assembly.”Photo credit: NASA/Chris Gunn What brought you to Goddard?
      In 2019, I began a B.S. in mechanical engineering at the University of Wyoming in Laramie. 
      In the spring of 2020, I reached out to an organization at the University of Wyoming looking for opportunities to further my education in the field of aerospace. They introduced me to the Wyoming Space Grand Consortium and, through their website, I learned of and applied to be a NASA Office of STEM Engagement intern in the spring of 2021. I received an offer and, in the summer of 2021, began working as a remote intern at Goddard on the 3D modeling and rendering of early spacecraft.  
      How did the Hispanic Advisory Committee for Employees (HACE) introduce you to the Pathways Program?
      The summer of 2021, the different employee advisory committees at Goddard held presentations for the interns. I am Hispanic; I naturally gravitated towards HACE and fell in love with the extremely warm community they provided. 
      I attended their monthly meetings and I presented to the center at their end of the summer intern presentation. HACE introduced me to the Pathways Program, and the organization was instrumental in my becoming a Pathways student intern. This Pathways internship eventually led to my conversion to a fulltime employee and my current position in the Mechanical Engineering Branch here at Goddard.
      What one piece of advice would you give to a new intern?
      Never be afraid to ask questions and always seek out new connections. Goddard is a well of knowledge, you can learn and grow a lot from those around you.
      Tell us about your mentorship at Goddard.
      Jack Marshall is an aerospace engineer and the lead for SASS. When I was an intern, he showed me a glimpse into the world of engineering, providing perspective on all aspects of the project from administrative to technical. He continues to guide my engineering journey and has been instrumental in developing me into the engineer I am today. I am incredibly grateful to Jack for his welcome and his guidance. 
      What is the coolest part about your job?
      The best parts about my job are the people I get to work with and the hardware we get to build. Whether we’re in a small lab in Goddard’s integration and testing facility or a large clean room, I get to spend most of my days working with incredible people to build, test, and integrate flight hardware. Every day there is something to be excited about and someone I get to work with who is likely to teach me something new. That excitement makes my work fun. 
      It’s also fun to work in facilities like the largest clean room at Goddard, where the James Webb Space Telescope was built. It was interesting getting used to being gowned up. You start with removing electronics and putting on a face mask, hair net, and shoe covers, before taking a quick air shower.  Next comes the hood, coveralls, and boots, before taping your gloves and finally entering the clean room.
      Related: Solar Panels for NASA’s Roman Space Telescope Pass Key Tests “Whether we’re in a small lab in Goddard’s integration and testing facility or a large clean room, I get to spend most of my days working with incredible people to build, test, and integrate flight hardware,” said Aaron. “Every day there is something to be excited about and someone I get to work with who is likely to teach me something new.”Photo credit: NASA/Jolearra Tshiteya What do you hope to be doing in five years?
      I would hope to have the opportunity to continue learning and working here at Goddard. I love what I do, and I hope to help others interested, find a similar path to NASA.
      What do you do fun?
      I still love to go fishing and hiking any chance I get and have been looking forward to doing more here in Maryland. Since moving to the area, I have also been enjoying attending Nationals baseball games in D.C., and I have been looking for opportunities to continuing to play music since graduating college. 
      Aaron Vigil plays the sousaphone at the University of Wyoming in Laramie. Photo courtesy of Aaron Vigil Who inspires you?
      My biggest inspirations have been my parents and grandparents, without them I would not be where I am today. I cannot thank them enough. They provided me my foundation and have supported me throughout my life, encouraging me to never give up. They have always had my back. 
      I also want to thank my Wyoming community where I grew up and my early mentors within that community. 
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Grounded by roots, but always growing.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Aug 29, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center Nancy Grace Roman Space Telescope People of NASA Explore More
      9 min read Veronica T. Pinnick Put NASA’s PACE Mission through Its Paces
      Article 5 months ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
      Article 1 week ago 7 min read Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
      Instrument Systems Engineer Xiaoyi Li leads technical teams united by a common vision to achieve…
      Article 2 weeks ago View the full article
    • By NASA
      A galactic halo is a loose collection of stars that extends 15 to 20 times beyond the radius of the brightest part of the galaxy. One of the few galaxies with a well-studied stellar halo is our neighbor, Andromeda, depicted here in the graphic. The stellar halo is illustrated with exaggerated brightness and density to show how far it extends. When the Nancy Grace Roman Space Telescope launches, it will be able to use its wide field of view to comprehensively image many more stellar halos of more distant galaxies.
      NASA, Ralf Crawford (STScI) The universe is a dynamic, ever-changing place where galaxies are dancing, merging together, and shifting appearance. Unfortunately, because these changes take millions or billions of years, telescopes can only provide snapshots, squeezed into a human lifetime.
      However, galaxies leave behind clues to their history and how they came to be. NASA’s upcoming Nancy Grace Roman Space Telescope will have the capacity to look for these fossils of galaxy formation with high-resolution imaging of galaxies in the nearby universe.
      Astronomers, through a grant from NASA, are designing a set of possible observations called RINGS (the Roman Infrared Nearby Galaxies Survey) that would collect these remarkable images, and the team is producing publicly available tools that the astronomy community can use once Roman launches and starts taking data. The RINGS survey is a preliminary concept that may or may not be implemented during Roman’s science mission.
      Roman is uniquely prepared for RINGS due to its resolution akin to NASA’s Hubble Space Telescope and its wide field of view – – 200 times that of Hubble in the infrared – – making it a sky survey telescope that complements Hubble’s narrow-field capabilities.
      Galactic Archaeologists
      Scientists can only look at brief instances in the lives of evolving galaxies that eventually lead to the fully formed galaxies around us today. As a result, galaxy formation can be difficult to track.
      Luckily, galaxies leave behind hints of their evolution in their stellar structures, almost like how organisms on Earth can leave behind imprints in rock. These galactic “fossils” are groups of ancient stars that hold the history of the galaxy’s formation and evolution, including the chemistry of the galaxy when those stars formed.  
      These cosmic fossils are of particular interest to Robyn Sanderson, the deputy principal investigator of RINGS at the University of Pennsylvania in Philadelphia. She describes the process of analyzing stellar structures in galaxies as “like going through an excavation and trying to sort out bones and put them back together.”  
      Roman’s high resolution will allow scientists to pick out these galactic fossils, using structures ranging from long tidal tails on a galaxy’s outskirts to stellar streams within the galaxy. These large-scale structures, which Roman is uniquely capable of capturing, can give clues to a galaxy’s merger history. The goal, says Sanderson, is to “reassemble these fossils in order to look back in time and understand how these galaxies came to be.” 
      Shedding Light on Dark Matter
      RINGS will also enable further investigations of one of the most mysterious substances in the universe: dark matter, an invisible form of matter that makes up most of a galaxy’s mass. A particularly useful class of objects for testing dark matter theories are ultra-faint dwarf galaxies. According to Raja GuhaThakurta of the University of California, Santa Cruz, “Ultra faint dwarf galaxies are so dark matter-dominated that they have very little normal matter for star formation. With so few stars being created, ultra-faint galaxies can essentially be seen as pure blobs of dark matter to study.” 
      Roman, thanks to its large field of view and high resolution, will observe these ultra-faint galaxies to help test multiple theories of dark matter. With these new data, the astronomical community will come closer to finding the truth about this unobservable dark matter that vastly outweighs visible matter: dark matter makes up about 80% of the universe’s matter while normal matter comprises the remaining 20%. 
      Ultra-faint galaxies are far from the only test of dark matter. Often, just looking in an average-sized galaxy’s backyard is enough. Structures in the halo of stars surrounding a galaxy often give hints to the amount of dark matter present. However, due to the sheer size of galactic halos (they are often 15-20 times as big as the galaxy itself), current telescopes are deeply inefficient at observing them.
      At the moment, the only fully resolved galactic halos scientists have to go on are our own Milky Way and Andromeda, our neighbor galaxy. Ben Williams, the principal investigator of RINGS at the University of Washington in Seattle, describes how Roman’s power will amend this problem: “We only have reliable measurements of the Milky Way and Andromeda, because those are close enough that we can get measurements of a large number of stars distributed across their stellar halos. So, with Roman, all of a sudden we’ll have 100 or more of these fully resolved galaxies.”
      When Roman launches by May 2027, it is expected to fundamentally alter how scientists understand galaxies. In the process, it will shed some light on our own home galaxy. The Milky Way is easy to study up close, but we do not have a large enough selfie stick to take a photo of our entire galaxy and its surrounding halo. RINGS shows what Roman is capable of should such a survey be approved. By studying the nearby universe, RINGS can examine galaxies similar in size and age to the Milky Way, and shed light on how we came to be here. 
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Patt Molinari
      Space Telescope Science Institute, Baltimore, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam
      Space Telescope Science Institute, Baltimore, Md.
      Explore More
      5 min read NASA Telescope to Help Untangle Galaxy Growth, Dark Matter Makeup
      Article 2 years ago 5 min read Millions of Galaxies Emerge in New Simulated Images From NASA’s Roman
      Article 1 year ago 5 min read How NASA’s Roman Space Telescope Will Rewind the Universe
      Article 1 year ago Share
      Details
      Last Updated Aug 29, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Matter Galaxies Stars The Universe View the full article
    • By European Space Agency
      Image: Webb peeks into Perseus View the full article
    • By NASA
      Both versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope appear in this photo, taken in the largest clean room at NASA’s Goddard Space Flight Center. The flight version lies flat in the foreground, while the qualification assembly stands upright in the background. The flight panels will shade the mission’s instruments and power the observatory. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope’s Solar Array Sun Shield has successfully completed recent tests, signaling that the assembly is on track to be completed on schedule. The panels are designed to power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
      The Roman team has two sets of these panels –– one that will fly aboard the observatory and another as a test structure, used specifically for preliminary assessments.
      Engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, evaluated the test version in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment the flight panels will experience in space. Since the panels will be stowed for launch, the team practiced deploying them in space-like conditions.
      The solar panels for NASA’s Nancy Grace Roman Space Telescope are undergoing assessment in a test chamber at the agency’s Goddard Space Flight Center in this photo.NASA/Chris Gunn Meanwhile, a vendor built up the flight version by fitting the panels with solar cells. After delivery to Goddard, technicians tested the solar cells by flashing the panels with a bright light that simulates the Sun.
      “We save a significant amount of time and money by using two versions of the panels, because we can do a lot of preliminary tests on a spare while moving further in the process with the flight version,” said Jack Marshall, the Solar Array Sun Shield lead at NASA Goddard. “It streamlines the process and also avoids risking damage to the panels that will go on the observatory, should testing reveal a flaw.”
      Next spring, the flight version of the Solar Array Sun Shield will be installed on the Roman spacecraft. Then, the whole spacecraft will go through thorough testing to ensure it will hold up during launch and perform as expected in space.
      To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Explore More
      5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’
      Article 2 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 1 month ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 4 months ago Share
      Details
      Last Updated Aug 26, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Science-enabling Technology Space Communications Technology View the full article
  • Check out these Videos

×
×
  • Create New...