Members Can Post Anonymously On This Site
Volunteers watching the skies
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Curiosity Blog, Sols 4577-4579: Watch the Skies
NASA’s Mars rover Curiosity acquired this image inside a trough in the boxwork terrain on Mars, using its Right Navigation Camera. Curiosity captured the image on June 20, 2025 — Sol 4575, or Martian day 4,575 of the Mars Science Laboratory mission — at 00:30:12 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
Earth planning date: Friday, June 20, 2025
During the plan covering Sols 4575-4576, Curiosity continued our investigation of mysterious boxwork structures on the shoulders of Mount Sharp. After a successful 56-meter drive (about 184 feet), Curiosity is now parked in a trough cutting through a highly fractured region covered by linear features thought to be evidence of groundwater flow in the distant past of Mars. With all six wheels firmly planted on solid ground, our rover is ready for contact science! Unfortunately, a repeat of the frost-detection experiment expected for the weekend plan is postponed for a few days due to a well-understood ChemCam issue. In the meantime, our atmospheric investigations have a chance to shine, as they received additional time to observe the Martian sky.
In the early afternoon of Sol 4577, Curiosity’s navigation cameras will take a movie of the upper reaches of Aeolis Mons (Mount Sharp), hoping to see moving cloud shadows. This observation enables the team to calculate the altitude of clouds drifting over the peak. Next, Navcam will point straight up, to image cloud motion at the zenith and determine wind direction at their altitude. Mastcam will then do a series of small mosaics to study the rover workspace and features of the trough that Curiosity has entered. First is a 6×4 stereo mosaic of the workspace and the contact science targets “Copacabana” and “Copiapo.” The first target is a representative sample of the trough bedrock, and its name celebrates a town in Bolivia located on the shores of Lake Titicaca. The second target is a section of lighter-toned material, which may be associated with stripes or “veins” filling the many crosscutting fractures in the local stones. These are the deposits potentially left by groundwater intrusion long ago. The name “Copiapo” honors a silver mining city in the extremely dry Atacama desert of northern Chile. A second 6×3 Mastcam stereo mosaic will look at active cracks in the trough. Two additional 5×1 Mastcam stereo mosaics target “Ardamarca,” a ridge parallel to the trough walls, and a cliff exposing layers of rock at the base of “Mishe Mokwa” butte. At our current location, all the Curiosity target names are taken from the Uyuni geologic quadrangle named after the otherworldly lake bed and ephemeral lake high on the Bolivian altiplano, but the Mishe Mokwa butte is back in the Altadena quad, named for a popular hiking trail in the Santa Monica Mountains. After this lengthy science block, Curiosity will deploy its arm, brush the dust from Copacabana with the DRT, then image both it and Copiapo with the MAHLI microscopic imager. Overnight, APXS will determine the composition of these two targets.
Early in the morning of Sol 4578, Mastcam will take large 27×5 and 18×3 stereo mosaics of different parts of the trough, using morning light to highlight the terrain shadows. Later in the day, Navcam will do a 360 sky survey, determining phase function across the entire sky. A 25-meter drive (about 82 feet) will follow, and the post-drive imaging includes both a 360-degree Navcam panorama of our new location and an image of the ground under the rover with MARDI in the evening twilight. The next sol is all atmospheric science, with an extensive set of afternoon suprahorizon movies and a dust-devil survey for Navcam, as well as a Mastcam dust opacity observation. The final set of observations in this plan happens on the morning of Sol 4580 with more Navcam suprahorizon and zenith movies to observe clouds, a Navcam dust opacity measurement across Gale Crater, and a last Mastcam tau. On Monday, we expect to plan another drive and hope to return to the frost-detection experiment soon as we explore the boxwork canyons of Mars.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jun 20, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot
Article
5 hours ago
3 min read Curiosity Blog, Sols 4573-4574: Welcome to the Uyuni Quad
Article
2 days ago
3 min read Curiosity Blog, Sols 4570-4572: A Fond Farewell, With a Side of Frost
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
L. Y. Zhou, a senior at Skyline High School, Ann Arbor, MI, representing the SunRISE Ground Radio Lab (GRL) summer research project team at the Solar Heliospheric and INterplanetary Environment (SHINE) conference, held in Juneau, AK in August 2024. Other contributing high school students were S. Rajavelu-Mohan (Washtenaw Technical Middle College, Ann Arbor, MI), M. I. Costacamps-Rivera (Centro Residencial de Oportunidades Educativas de Mayagüez, Mayagüez, PR), E. Schneider (Marquette Senior High School, Marquette, MI), and L. Cui (Skyline High School, Ann Arbor, MI). Solar radio bursts, intense blasts of radio emission associated with solar flares, can wreak havoc on global navigation systems. Now, as part of the Ground Radio Lab campaign led by the University of Michigan and NASA’s SunRISE (Sun Radio Interferometer Space Experiment) mission, which is managed by the agency’s Jet Propulsion Laboratory in Southern California, high school and college students across the nation are collecting, processing, and analyzing space weather data to help better understand these bursts.
Participating students have presented their findings at local science fairs and national conferences, including the Solar Heliospheric and INterplanetary Environment (SHINE) conference held in Juneau, Alaska in August 2024. These students sifted through thousands of hours of observations to identify and categorize solar radio bursts.
Your school can get involved too!
Participating high schools receive free, self-paced online training modules sponsored by the SunRISE mission that cover a range of topics, including radio astronomy, space physics, and science data collection and analysis. Students and teachers participate in monthly webinars with space science and astronomy experts, build radio telescopes from kits, and then use these telescopes to observe low frequency emissions from the Sun and other objects like Jupiter and the Milky Way.
Visit the Ground Radio Lab website to learn more about the new campaign and apply to participate.
Share
Details
Last Updated May 28, 2025 Related Terms
Citizen Science Heliophysics Explore More
2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds
Article
2 weeks ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
2 weeks ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
2 weeks ago
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A team from South Dakota State University with their project, “Soil Testing and Plant Leaf Extraction Drone,” took first place at the 2025 Gateways to Blue Skies Forum held May 20-21 in Palmdale, California. Advisor Todd Lechter, left, along with team members Nick Wolles, Keegan Visher, Nathan Kuehl and Laura Peterson, and graduate advisor Allea Klauenberg, right, accepted the award.NASA A team from South Dakota State University, with their project titled “Soil Testing and Plant Leaf Extraction Drone” took first place at the 2025 NASA Gateways to Blue Skies Competition, which challenged student teams to research aviation solutions to support U.S. agriculture.
The winning project proposed a drone-based soil and tissue sampling process that would automate a typically labor-intensive farming task. The South Dakota State team competed among eight finalists at the 2025 Blue Skies Forum May 20-21 in Palmdale, California, near NASA’s Armstrong Flight Research Center. Subject matter experts from NASA and industry served as judges.
“This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms,” said Steven Holz, assistant project manager for University Innovation with NASA’s Aeronautics Research Mission Directorate and Blue Skies judge and co-chair. “They bring imaginative ideas, interesting insights, and an impressive level of dedication. It’s always an honor to work with the next generation of innovators participating in our competition.”
This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms
Steven holz
Assistant Project Manager for University Innovation
The winning team members were awarded an opportunity to intern during the 2025-26 academic year at any of four aeronautics-focused NASA centers — Langley Research Center in Hampton, Virginia, Glenn Research Center in Cleveland, Ames Research Center in California’s Silicon Valley, or Armstrong Flight Research Center in Edwards, California.
“It’s been super-rewarding for our team to see how far we’ve come, especially with all these other amazing projects that we were competing against,” said Nathan Kuehl, team lead at South Dakota State University. “It wouldn’t have been possible without our graduate advisor, Allea Klauenberg, and advisor, Todd Lechter. We want to thank everybody that made this experience possible.”
Other awards included:
Second Place — University of Tulsa, CattleLog Cattle Management System Best Technical Paper — Boston University, PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment Sponsored by NASA’s Aeronautics Research Mission Directorate, this year’s competition asked teams of university students to research new or improved aviation solutions to support agriculture that could be applied by 2035 or sooner. The goal of the competition, titled AgAir: Aviation Solutions for Agriculture, was to enhance production, efficiency, sustainability, and resilience to extreme weather.
At the forum, finalist teams presented concepts of aviation systems that could help the agriculture industry.Students had the opportunity to meet with NASA and industry experts, tour NASA Armstrong, and gain insight into the agency’s aviation mission.
U.S. agriculture provides food, fuel, and fiber to the nation and the world. However, the industry faces significant challenges. NASA Aeronautics is committed to supporting commercial, industrial, and governmental partners in advancing aviation systems to modernize agricultural capabilities.
The Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project and is managed by the National Institute of Aerospace.
The National Institute of Aerospace has made available a livestream of the competition, as well as information about the finalists and their projects, and details about the 2025 competition.
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground
Article 6 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
Article 7 days ago 5 min read NASA Satellite Images Could Provide Early Volcano Warnings
Article 7 days ago Keep Exploring Discover More Topics From NASA
Aeronautics
Aeronautics STEM
Transformative Aeronautics Concepts Program
NASA History
Share
Details
Last Updated May 22, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Technology Transfer Transformative Aeronautics Concepts Program University Innovation View the full article
-
By NASA
NASA’s Nancy Grace Roman Space Telescope team shared Thursday the designs for the three core surveys the mission will conduct after launch. These observation programs are designed to investigate some of the most profound mysteries in astrophysics while enabling expansive cosmic exploration that will revolutionize our understanding of the universe.
“Roman’s setting out to do wide, deep surveys of the universe in a way that will help us answer questions about how dark energy and dark matter govern cosmic evolution, and the demographics of worlds beyond our solar system,” said Gail Zasowski, an associate professor at the University of Utah and co-chair of the ROTAC (Roman Observations Time Allocation Committee). “But the overarching goal is that the surveys have broad appeal and numerous science applications. They were designed by and for the astronomical community to maximize the science they’ll enable.”
NASA’s Nancy Grace Roman Space Telescope’s three main observing programs, highlighted in this infographic, can enable astronomers to view the universe as never before, revealing billions of cosmic objects strewn across enormous swaths of space-time.Credit: NASA’s Goddard Space Flight Center Roman’s crisp, panoramic view of space and fast survey speeds provide the opportunity for astronomers to study the universe as never before. The Roman team asked the science community to detail the topics they’d like to study through each of Roman’s surveys and selected committees of scientists across many organizations to evaluate the range of possibilities and formulate three compelling options for each.
In April, the Roman team received the recommendations and has now determined the survey designs. These observations account for no more than 75 percent of Roman’s surveys during its five-year primary mission, with the remainder allocated to additional observations that will be proposed and developed by the science community in later opportunities.
“These survey designs are the culmination of two years of input from more than 1,000 scientists from over 350 institutions across the globe,” said Julie McEnery, Roman’s senior project scientist at NASA Goddard. “We’re thrilled that we’ve been able to hear from so many of the people who’ll use the data after launch to investigate everything from objects in our outer solar system, planets across our galaxy, dark matter and dark energy, to exploding stars, growing black holes, galaxies by the billions, and so much more.”
With all major hardware now delivered, Roman has entered its final phase of preparation for launch, undergoing integration and key environmental testing at NASA Goddard. Roman is targeted to launch by May 2027, with the team working toward a potential launch window that opens in October 2026.
This infographic describes the High-Latitude Wide-Area Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. This observation program has three components, covering more than 5,000 square degrees (about 12 percent of the sky) altogether in just under a year and a half. The main part covers about 2,500 square degrees, doing both spectroscopy (splitting light into individual colors to study patterns that reveal detailed information) and imaging in multiple filters (which allow astronomers to select specific wavelengths of light) to provide the rich dataset needed for precise studies of our universe. A wider component spans more than twice the area using a single filter, specifically covering a large area that can be viewed by ground-based telescopes located in both the northern and southern hemispheres. The final component focuses on a smaller region to provide a deeper view that will help astronomers study faint, distant galaxies.Credit: NASA’s Goddard Space Flight Center High-Latitude Wide-Area Survey
Roman’s largest survey, the High-Latitude Wide-Area Survey, combines the powers of imaging and spectroscopy to unveil more than a billion galaxies strewn across a wide swath of cosmic time. Roman can look far from the dusty plane of our Milky Way galaxy (that’s what the “high-latitude” part of the survey name means), looking up and out of the galaxy rather than through it to get the clearest view of the distant cosmos.
The distribution and shapes of galaxies in Roman’s enormous, deep images can help us understand the nature of dark energy — a pressure that seems to be speeding up the universe’s expansion — and how invisible dark matter, which Roman will detect by its gravitational effects, influences the evolution of structure in our universe.
For the last two years, researchers have been discussing ways to expand the range of scientific topics that can be studied using the same dataset. That includes studying galaxy evolution, star formation, cosmic voids, the matter between galaxies, and much more.
This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component covers over 18 square degrees — a region of sky as large as 90 full moons — and sees supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey can pierce even farther, potentially back to when the universe was around a billion years old. The survey is split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey consists of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center High-Latitude Time-Domain Survey
Roman’s High-Latitude Time-Domain Survey can probe our dynamic universe by observing the same region of the cosmos repeatedly. Stitching these observations together to create movies can allow scientists to study how celestial objects and phenomena change over time periods of days to years.
This survey can probe dark energy by finding and studying many thousands of a special type of exploding star called type Ia supernovae. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion.
“Staring at a large volume of the sky for so long will also reveal black holes being born as neutron stars merge, and tidal disruption events –– flares released by stars falling into black holes,” said Saurabh Jha, a professor at Rutgers University in New Brunswick, New Jersey, and ROTAC co-chair. “It will also allow astronomers to explore variable objects, like active galaxies and binary systems. And it enables more open-ended cosmic exploration than most other space telescopes can do, offering a chance to answer questions we haven’t yet thought to ask.”
This infographic describes the Galactic Bulge Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The smallest of Roman’s core surveys, this observation program consists of repeat visits to six fields covering 1.7 square degrees total. One field pierces the very center of the galaxy, and the others are nearby — all in a region of the sky that will be visible to Roman for two 72-day stretches each spring and fall. The survey mainly consists of six seasons (three early on, and three toward the end of Roman’s primary mission), during which Roman views each field every 12 minutes. Roman also views the six fields with less intensity at other times throughout the mission, allowing astronomers to detect microlensing events that can last for years, signaling the presence of isolated, stellar-mass black holes.Credit: NASA’s Goddard Space Flight Center Galactic Bulge Time-Domain Survey
Unlike the high-latitude surveys, Roman’s Galactic Bulge Time-Domain Survey will look inward to provide one of the deepest views ever of the heart of our Milky Way galaxy. Roman’s crisp resolution and infrared view can allow astronomers to watch hundreds of millions of stars in search of microlensing signals — gravitational boosts of a background star’s light that occur when an intervening object passes nearly in front of it. While astronomers have mainly discovered star-hugging worlds, Roman’s microlensing observations can find planets in the habitable zone of their star and farther out, including analogs of every planet in our solar system except Mercury.
The same set of observations can reveal “rogue” planets that drift through the galaxy unbound to any star, brown dwarfs (“failed stars” too lightweight to power themselves by fusion the way stars do), and stellar corpses like neutron stars and white dwarfs. And scientists could discover 100,000 new worlds by seeing stars periodically get dimmer as an orbiting planet passes in front of them, events called transits. Scientists can also study the stars themselves, detecting “starquakes” on a million giant stars, the result of sound waves reverberating through their interiors that can reveal information about their structures, ages, and other properties.
Data from all of Roman’s surveys will be made public as soon as it is processed, with no periods of exclusive access.
“Roman’s unprecedented data will offer practically limitless opportunities for astronomers to explore all kinds of cosmic topics,” McEnery said. “We stand to learn a tremendous amount of new information about the universe very rapidly after the mission launches.”
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Apr 24, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Black Holes Dark Energy Dark Matter Earth-like Exoplanets Exoplanets Galaxies Gas Giant Exoplanets Neptune-Like Exoplanets Neutron Stars Stars Stellar-mass Black Holes Super-Earth Exoplanets Supernovae Terrestrial Exoplanets The Milky Way The Solar System The Universe Explore More
6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
Article 1 year ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
Article 2 years ago View the full article
-
By NASA
A chevron nozzle is installed on NASA’s Learjet for a mid-March 2001 flight test at Lorain Country Airport to verify that in an emergency, the aircraft could be flown using only the experimental engine. Credit: NASA/Marvin Smith
Shortly after dawn on March 27, 2001, NASA pilot Bill Rieke took off from an airfield just outside of Phoenix in NASA’s blue-and-white Learjet 25 and flew low over a series of microphones for the first flight test of a groundbreaking NASA technology.
On one of the plane’s engines was an experimental jagged-edged nozzle that researchers at Glenn Research Center in Cleveland had discovered made aircraft significantly quieter. These initial flight tests were an important step toward using these “chevron nozzles” on modern aircraft, lowering noise levels for communities.
NASA Glenn has been exploring ways of reducing engine noise since the first jet airliners appeared in the 1950s. New turbofan engines in the 1960s were quieter, but the expansion of the overall airline industry meant that noise was still an issue. With the introduction of noise-limiting mandates in the 1970s, NASA and engine manufacturers embarked on a decades-long search for technologies to lower noise levels.
NASA researchers discovered that the military’s use of rectangular notches, or tabs, along an engine nozzle’s exit – to help disguise a jet fighter’s infrared signature – could also reduce engine noise by helping mix the hot air from the engine core and the cooler air blowing through the engine fan. In the 1990s, Glenn researcher Dennis Huff and his colleagues discovered that a serrated, or sawtooth, shape, referred to as a chevron, offered more promise.
Dennis Huff explains chevron nozzles, seen on a table, to U.S. Senator George Voinovich and other visitors inside the Aero-Acoustic Propulsion Laboratory facility in 2006. Huff was head of NASA Glenn Research Center’s Acoustics Branch at this point.Credit: NASA/Marvin Smith NASA contracted with General Electric and Pratt & Whitney to develop an array of tab and chevron designs to be analyzed in Glenn’s unique Aero-Acoustic Propulsion Laboratory (AAPL). Extensive testing in the spring of 1997 showed the possibilities for reducing noise with these types of nozzles.
Engine manufacturers were impressed with the findings but wary of any technology that might impact performance. So, in 1998, NASA funded engine tests of the 14 most promising designs. The tests revealed the chevron nozzle had a negligible 0.25% reduction of thrust. It was a major development for jet noise research.
In September 2000, Glenn’s Flight Operations Branch was contacted about the logistics of flight-testing chevron nozzles on the center’s Learjet 25 to verify the ground tests and improve computer modeling. Nothing further came of the request, however, until early the next year when Huff informed Rieke, chief of Flight Operations, that the researchers would like to conduct flight tests in late March—with just eight weeks to prepare.
Glenn’s Acoustics Branch worked with colleagues at NASA’s Langley Research Center in Hampton, Virginia, and the Arizona-based engine manufacturer Honeywell on the effort. They planned to conduct testing at Estrella Sailport just outside of Phoenix from March 26 to 28, 2001.
Bill Rieke and Ellen Tom with the chevron nozzle installed on the Learjet. NASA Glenn Research Center’s small Flight Operations team was heavily involved with icing research and solar cell calibration flights during this period, so arrangements were made for Tom, a Federal Aviation Administration pilot, to assist with the chevron flights. Credit: Courtesy of Bill Rieke With the required safety and design reviews, the eight-week target date would be difficult to meet for any test flight, but this one was particularly challenging as it involved modifications to the engine nacelle. While the special nozzle engineers created for the flights would allow them to switch between a six- and a 12-chevron design during testing, it also got hot quickly. This necessitated the installation of new sensors, rewiring of fire alarm cables, and the presence of an onboard test engineer to monitor the temperatures. The short turnaround also required expedited efforts to obtain flight plan approvals, verify the plane’s airworthiness, and perform normal maintenance activities.
Despite the challenges, Rieke and a small team delivered the Learjet to Estrella on March 25, as planned. The next day was spent coordinating with the large Langley and Honeywell team and acquiring baseline noise data. The pilots idled the unmodified engine as the Learjet flew over three perpendicular rows of microphones at an altitude of 500 feet and speed of 230 miles per hour.
View from below as NASA Glenn Research Center’s Learjet 25 passes overhead at the Estrella airfield with the experimental chevron nozzle visible on the left wing.Credit: Courtesy of Bill Rieke The flight patterns were repeated over the next two days while alternately using the two variations of the chevron nozzle. The researchers anecdotally reported that there was no perceptible noise reduction as the aircraft approached, but significant reductions once it passed. Recordings supported these observations and showed that sideline noise was reduced, as well.
The flights of the Learjet, which was powered by a variation of GE’s J-85 turbojet, were complemented by Honeywell’s turbofan-powered Falcon 20 aircraft. These flights ultimately confirmed the noise reduction found in earlier AAPL tests.
Overall, the flight tests were so successful that just over a year later the FAA began certifying GE’s CF34–8, the first commercial aircraft engine to incorporate chevron technology. The engine was first flown on a Bombardier CRJ900 in 2003. Continued studies by both NASA and industry led to the improved designs and the incorporation of chevrons into larger engines, such as GE’s GEnx.
According to Huff, the chevron’s three-decibel noise decrease was analogous to the difference between running two lawnmowers and one. Their comparatively easy integration into engine design and minimal effect on thrust made the chevron a breakthrough in noise-reduction technology. In 2002, NASA presented an innovation award to the Glenn, Langley, and Honeywell team that carried out the flights. Today, airliners such as the 737 MAX and 787 Dreamliner use chevron nozzles to lower noise levels for communities near airports.
Explore More
3 min read NASA Selects Three University Teams to Participate in Flight Research
Article 6 hours ago 2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
Article 2 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.