Jump to content

Recommended Posts

Posted
low_keystone.png

Water is a hot topic in the study of exoplanets, including "hot Jupiters," whose masses are similar to that of Jupiter, but lie much closer to their parent star than Jupiter is to the sun. They are estimated to be a scorching 2,000 degrees Fahrenheit, meaning any water they host would take the form of water vapor.

Astronomers have found many hot Jupiters with water in their atmospheres, but other hot Jupiters appear to have none. In a new study, scientists used exoplanet data from a single instrument on NASA's Hubble Space Telescope to uniformly characterize a group of 19 hot Jupiters previously studied with Hubble. They found that as much as half of the water in the atmospheres of the exoplanets may be blocked by these clouds or hazes. The new findings suggest that clouds or haze layers could be preventing a substantial amount of atmospheric water from being detected by space telescopes. The study is the first to quantify how much of the atmosphere would be shielded as a result of clouds or haze.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Spies a Spiral That May Be Hiding an Imposter
      The spiral galaxy UGC 5460 shines in this NASA/ESA Hubble Space Telescope image. UGC 5460 sits about 60 million light-years away in the constellation Ursa Major. ESA/Hubble & NASA, W. Jacobson-Galán, A. Filippenko, J. Mauerhan
      Download this image

      The sparkling spiral galaxy gracing this NASA/ESA Hubble Space Telescope image is UGC 5460, which sits about 60 million light-years away in the constellation Ursa Major. This image combines four different wavelengths of light to reveal UGC 5460’s central bar of stars, winding spiral arms, and bright blue star clusters. Also captured in the upper left-hand corner is a far closer object: a star just 577 light-years away in our own galaxy.
      UGC 5460 has hosted two recent supernovae: SN 2011ht and SN 2015as. It’s because of these two stellar explosions that Hubble targeted this galaxy, collecting data for three observing programs that aim to study various kinds of supernovae.
      SN 2015as was as a core-collapse supernova: a cataclysmic explosion that happens when the core of a star far more massive than the Sun runs out of fuel and collapses under its own gravity, initiating a rebound of material outside the core. Hubble observations of SN 2015as will help researchers understand what happens when the expanding shockwave of a supernova collides with the gas that surrounds the exploded star.
      SN 2011ht might have been a core-collapse supernova as well, but it could also be an impostor called a luminous blue variable. Luminous blue variables are rare stars that experience eruptions so large that they can mimic supernovae. Crucially, luminous blue variables emerge from these eruptions unscathed, while stars that go supernova do not. Hubble will search for a stellar survivor at SN 2011ht’s location with the goal of revealing the explosion’s origin.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More

      The Death Throes of Stars


      Homing in on Cosmic Explosions

      Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Feb 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble’s Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      How to Attend
      The workshop will be hosted by NASA Jet Propulsion Laboratory.
      Virtual and in-person attendance are available. Registration is required for both. (Link coming soon!)
      Virtual attendees will receive connection information one week before the workshop.
      Background, Goals and Objectives
      The NASA Engineering and Safety Center (NESC) is conducting an assessment of the state of cold capable electronics for future lunar surface missions. The intent is to enable the continuous use of electronics with minimal or no thermal management on missions of up to 20 years in all regions of the lunar surface, e.g., permanently shadowed regions and equatorial. The scope of the assessment includes: capture of the state of cold electronics at NASA, academia, and industry; applications and challenges for lunar environments; gap analyses of desired capabilities vs state of the art/practice; guidance for cold electronics selection, evaluation and qualification; and recommendations for technology advances and follow-on actions to close the gaps. The preliminary report of the assessment will be available the first week of April 2025 on this website, i.e., 3 weeks prior to the workshop. Attendees are urged to read the report beforehand as the workshop will provide only a limited, high-level summary of the report’s key findings. The goal of the workshop is to capture your feedback with regards to the findings of the report, especially in the areas below: Technologies, new or important studies or data that we missed. Gaps, i.e. requirements vs available capabilities that we missed. Additional recommendations, suggestions, requests, that we missed.
      Preliminary Agenda
      Day 1, April 30, 2025 8:00 – 9:00      Sign-in 9:00 – 10:00    Introduction – Y. Chen 10:00 – 11:00  Environment and Architectural Considerations – R. Some 11:00 – 12:00 Custom Electronics – M. Mojarradi 12:00 – 13:00  Lunch 13:00 – 14:00  COTS Components – J. Yang-Scharlotta 14:00 – 15:00  Power Architecture – R. Oeftering 15:00 – 15:30  Energy Storage – E. Brandon 15:30 – 17:00  Materials and Packaging and Passives – L. Del Castillo 17:00 – 17:30  Qualification – Y. Chen 18:30               Dinner Day 2, May 1, 2025 8:00 – 9:00      Sign-in 9:00 – 12:00    Review and discussion of key findings   12:00 – 13:00  Lunch 13:00 – 15:00  Follow on work concepts & discussions. Please be prepared to discuss: 15 min each from industry primes and subsystem developers What would you like to see developed and how would it impact your future missions/platforms? 15:00 – 17:30  Follow on work concepts & discussions 15 min each from technology & component developers, academia, government agencies, etc. What would you like to be funded to do and what are benefits to NASA/missions? 17:00 – 17:30  Wrap up – Y. Chen Points of Contact
      If you have any questions regarding the workshop, please contact Roxanne Cena at Roxanne.R.Cena@jpl.nasa.gov and Amy K. Wilson at Amy.K.Wilson@jpl.nasa.gov
      Share
      Details
      Last Updated Feb 20, 2025 Related Terms
      NASA Engineering and Safety Center Explore More
      2 min read NESC Key In-Progress Technical Activities
      Article 1 week ago 5 min read Mechanical Systems TDT Support Reaches Across NASA Programs
      Article 2 months ago 2 min read NESC Assists in Heatshield Investigation
      Article 2 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 4 min read
      Sols 4445–4446: Cloudy Days are Here
      NASA’s Mars rover Curiosity acquired this image showing its left-front wheel and the large rock it ran into (visible at lower left); another rock blocked its right-front wheel (the wheel is visible at the right edge), so the rover paused its drive to await instructions from the mission team on Earth. Curiosity captured the image using its Front Hazard Avoidance Camera (Front Hazcam) on sol 4444, or Martian day 4,444 of the Mars Science Laboratory mission, on Feb. 5, 2025, at 08:38:01 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Feb. 5, 2025
      Overnight before planning today, Mars reached a solar longitude of 40 degrees. The solar longitude is how we like to measure where we are in a Mars year. Each year starts at 0 degrees and advances to 360 degrees at the end of the year. For those of us on the Environmental Science (ENV) team, 40 degrees is a special time as it marks the beginning of our annual Aphelion Cloud Belt (ACB) observation campaign. During this time of year, the northern polar ice cap is emerging into the sunlight, causing it to sublimate away and release water vapor into the atmosphere. At the same time, the atmosphere is generally colder, since Mars is near aphelion (its furthest distance from the Sun). 
      Together, these two factors mean that Mars’ atmosphere is a big fan of forming clouds during this part of the year. Gale is right near the southern edge of the ACB, so we’re starting to take more cloud movies to study how the ACB changes during the cloudy season. (Jezero Crater, home to Perseverance, is much closer to the heart of the ACB, so keep an eye on their Raw Images page over the next several months as well.
      The drive from Monday’s plan ended early, after just about 4 meters instead of the 38 meters that had been planned (about 13 feet vs. 125 feet). We initially thought this might have been because our left-front wheel ran into the side of a large rock (see the image above), but after we got our hands on the drive data, it turned out that the steering motor on the right front wheel indicated that a rock was in the way on that side too, so Curiosity stopped the drive to await further instruction from Earth. This is a well-understood issue, so we should be back on the road headed west today.
      The cold weather is still creating power challenges, so we had to carefully prioritize our activities today. Despite the drive fault, we received the good news that it was safe to unstow the arm, so we were able to pack in a full set of MAHLI, APXS, and DRT activities. Before that, though, we start as usual with some remote sensing activities, including ChemCam LIBS and Mastcam observations of “Beacon Hill” (some layered bedrock near the rover) and a ChemCam RMI mosaic of the upper portion of Texoli butte.
      After taking a 3½-hour nap to recharge our batteries, we get into the arm activities. These start off with some MAHLI images of the MAHLI and APXS calibration targets, then continue with MAHLI and APXS observations of “Zuma Canyon.” This is followed by DRT, APXS, and MAHLI activities of some bedrock in our workspace, “Bear Canyon.” Although we then take another short nap, we don’t yet stow the arm as we have a pair of lengthy post-sunset APXS integrations. The arm is finally stowed about an hour and a half before midnight.
      The second sol of this plan begins with some more remote sensing activities, starting with ChemCam LIBS on “Mission Point”. This is followed by a series of Mastcam images of “Crystal Lake” (polygonal fractures in the bedrock), “Stockton Flat” (fine lamination in the bedrock), “Mount Waterman,” and Mission Point. We then finish with some ENV activities, including a Mastcam tau and Navcam line-of-sight to measure dust in the atmosphere and a Navcam cloud movie. This plan ends with a (hopefully!) lengthy drive west and many hours asleep to recharge our batteries as much as possible before planning starts again on Friday. Of course, I would be remiss if I didn’t mention that REMS, RAD, and DAN continue to diligently monitor the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4443-4444: Four Fours for February


      Article


      19 hours ago
      3 min read Persevering Through Science


      Article


      3 days ago
      3 min read Sols 4441-4442: Winter is Coming


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points
      The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt.  The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
      With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology. 
      The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight. 
      The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
      New Belts Amaze Scientists
      Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
      “When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
      The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
      “These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
      How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
      CubeSat Fortuitously Comes Back to Life to Make the Discovery
      The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
      The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
      “Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
      Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
      “We are very proud that our very small CubeSat made such a discovery,” Li said.
      CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
      5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings


      Article


      2 days ago
      2 min read Hubble Spots a Supernova


      Article


      6 days ago
      2 min read Hubble Studies the Tarantula Nebula’s Outskirts


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...