Jump to content

Cloudy Days on Exoplanets May Hide Atmospheric Water


HubbleSite

Recommended Posts

low_keystone.png

Water is a hot topic in the study of exoplanets, including "hot Jupiters," whose masses are similar to that of Jupiter, but lie much closer to their parent star than Jupiter is to the sun. They are estimated to be a scorching 2,000 degrees Fahrenheit, meaning any water they host would take the form of water vapor.

Astronomers have found many hot Jupiters with water in their atmospheres, but other hot Jupiters appear to have none. In a new study, scientists used exoplanet data from a single instrument on NASA's Hubble Space Telescope to uniformly characterize a group of 19 hot Jupiters previously studied with Hubble. They found that as much as half of the water in the atmospheres of the exoplanets may be blocked by these clouds or hazes. The new findings suggest that clouds or haze layers could be preventing a substantial amount of atmospheric water from being detected by space telescopes. The study is the first to quantify how much of the atmosphere would be shielded as a result of clouds or haze.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      STARCOM held its inaugural Partnership Days bringing together leaders, educators, and innovators from academic institutions and the space-related private sector.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4348-4349: Smoke on the Water
      NASA’s Mars rover Curiosity created this composite image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. An onboard process, focus merging, makes a composite of images of the same target — acquired at different focus positions — to bring all (or, as many as possible) features into focus in a single image. Curiosity performed this merge on Oct. 27, 2024, sol 4346 (Martian day 4,346) of the Mars Science Laboratory Mission, at 15:45:47 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Oct. 28, 2024
      Before the science team starts planning, we first look at the latest Navcam image downlinked from Curiosity to see where the rover is located. It can be all too easy to get lost in the scenery of the Navcam and find new places in the distance we want to drive towards, but there’s so much beauty in the smaller things. Today I’ve chosen to show a photo from Curiosity’s hand lens camera, MAHLI, that takes photos so close that we can see the individual grains of the rock.
      The planning day usually starts by thinking about these smaller features: What rocks are the closest to the rover? What can we shoot with our laser? What instruments can we use to document these features? Today we planned two sols, and the focus of the close-up contact science became a coating of material that in some image stretches looks like a deep-purple color.
      We planned lots of activities to characterize this coating including use of the dust removal tool (DRT) and the APXS instrument on a target called “Reds Meadow.” This target will also be photographed by the MAHLI instrument. The team planned a ChemCam LIBS target on “Midge Lake” as well as a passive ChemCam target on “Primrose Lake” to document this coating with a full suite of instruments. Mastcam will then document the ChemCam LIBS target Midge Lake, and take a mosaic of the vertical faces of a few rocks near to the rover called “Peep Sight Peak” to observe the sedimentary structures here. Mastcam will also take a mosaic of “Pinnacle Ridge,” an area seen previously by the rover, from a different angle. ChemCam is rounding off the first sol with two long-distance RMI mosaics to document the stratigraphy of two structures we are currently driving between: Texoli butte and the Gediz Vallis channel.
      In the second sol of the plan, after driving about 20 meters (about 66 feet), Curiosity will be undertaking some environmental monitoring activities before an AEGIS activity that automatically selects a LIBS target in our new workspace prior to our planning on Wednesday morning.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Oct 30, 2024 Related Terms
      Blogs Explore More
      2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape


      Article


      9 hours ago
      3 min read Sols 4345-4347: Contact Science is Back on the Table


      Article


      2 days ago
      4 min read Sols 4343-4344: Late Slide, Late Changes


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA/Don Pettit NASA astronaut Don Pettit fills a sphere of water with food coloring in this image from Oct. 20, 2024. Pettit calls experiments like these “science of opportunity” – moments of scientific exploration that spontaneously come to mind because of the unique experience of being on the International Space Station. During his previous missions, Pettit has contributed to advancements for human space exploration aboard the International Space Station resulting in several published scientific papers and breakthroughs.
      See other inventive experiments Pettit has conducted.
      Image credit: NASA/Don Pettit
      View the full article
    • By NASA
      15 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      At the end of 2022, 65 percent of the Western United States was in severe drought, the result of a two decades long mega drought in the Colorado River Basin that had captured headlines around the world. 

      However, it was flooding, not drought, that was making headlines when we began our research for this story about OpenET, a revolutionary new online platform geared towards helping farmers and water managers monitor and reduce water use in watersheds where supplies were not keeping up with demand.  

      The start of 2023 brought flooding to many counties in California, leaving 68 percent of the state with suddenly little to no drought. And caused Forrest Melton, the NASA Project Scientist for OpenET and Associate Program Manager for agriculture and water resources with the NASA Earth Action program, to pause our video interview after a tree fell down outside his Bay Area home on a rainy day in March, 2023. 

      Coming online again after calling the fire department, Melton didn’t seem all too optimistic that the wet conditions would last. “California tends to swing between the two extremes of drought and flood,” Melton said. He referenced the 2016/17 winter which had particularly high precipitation but was followed by dry conditions during the following years, before the relief brought by the heavy rains, and flooding, in early 2023. 

      According to NOAA’s National Integrated Drought Information System it will take more than one wet winter to replenish groundwater in many parts of the western United States. Groundwater levels across the California Central Valley and many parts of the Ogallala Aquifer continue to decline. The need for better water management remains essential, and yet the data necessary to support new approaches has not been broadly available. 

      Enter the OpenET project, a multi-disciplinary, collaborative effort to make satellite-based evapotranspiration (ET) data available to the public. Melton describes the project as providing invaluable and scientifically robust data at all scales, “that can be used to support day to day decision making and long range planning to try to solve some really long standing and important water management challenges in the West.”


      What is Evapotranspiration?

      Evapotranspiration is the combined process of evaporation and transpiration, both of which transfer water from the land surface to the atmosphere as water vapor. Evaporation transforms water from the surface of the ground or bodies of water into water vapor, while transpiration is water vapor that is evaporated from plant tissues and escapes through the stomata, the tiny pores in plant leaves and stems. It is a process that is happening all around us almost all the time, but because water vapor is invisible to the human eye, it is very hard to measure on the ground.  
      A conceptual diagram of near-surface hydrology.M. W. Toews
      To understand the effect evapotranspiration has on a local water cycle, picture a large decorative fountain. Typically, these fountains recycle the same water over and over. As a fountain runs, water is pumped out of the fountain heads, falls back into the fountain’s basin, and then flows back through the pipe system before starting the process all over again. We can think of the water remaining within this fountain’s local water system as non-consumptive water use. Some water, however, will be lost from the fountain’s local water system by evaporating from the pool’s surface or mist from the fountain’s spray.

      Imagine the fountain also has lily pads growing in its basin. The lily pads will use the fountain’s water to survive and grow, losing some of that water to transpiration. The total water lost is evapotranspiration, and is considered consumptive water use, because it cannot be reused by the fountain. Tracking evapotranspiration can tell you how much water is removed or “depleted” from a local water system, and how much water needs to be added back in to support plant growth and maintain a healthy balance between water supply and water use. If too much water leaves the fountain, it will stop running. If too much water is added, it will overflow.  

      These concepts can be applied more broadly to the hydrologic cycle as a whole, and evapotranspiration data can play an important part in designing and implementing sustainable water management practices to combat larger issues like drought, as well as both short and long-term reductions in water availability. Historically, ET data have been obtained from ground-based instruments and methods, such as weighing lysimeters, which weigh soil and plants to track the water volume lost by evaporation or transpiration. Another common method is called eddy covariance, which calculates the amount of water vapor transported away from the land surface by wind eddies as they move across the land surface. But both are expensive and difficult to install and maintain, and measurements are only representative of a small portion of an individual agricultural field. It is cost prohibitive to collect these measurements over larger areas. 


      What makes OpenET different?

      The OpenET team saw the important niche left open by traditional evapotranspiration measurement methods and filled it. They built upon decades of research funded by NASA, USDA and USGS and developed a new platform that can take easily accessible and already available data from satellite programs, like Landsat, and combine it with weather data to calculate the ET for every quarter acre of land. Satellites can record information like the Earth’s surface temperature and how much of the incoming light from the sun is being reflected back out to space. OpenET is able to use physically-based mathematical models to combine the satellite and weather data and output accurate data on evapotranspiration rates and volumes. 

      This information is then made easily accessible through OpenET’s Data Explorer, a free web-based tool that allows anyone with an internet connection to access the data OpenET provides. Users begin by selecting an area of interest from a map of the western United States that provides data at the satellite resolution of a quarter-acre, and also broken down into known areas of interest and individual agricultural fields, each color coded with a heat map of evapotranspiration. Cooler colors indicate higher rates of evapotranspiration while warmer colors indicate lower rates. Users can zoom into specific areas on the map, and with just a click, a chart pops up showing the evapotranspiration trends for a given area, for the current year and the past five years. 

      The chart can show monthly ET trends, useful for understanding seasonal fluctuations, and also cumulative trends, useful for understanding year-to-year changes in evapotranspiration. “The OpenET team took a user-driven design approach from the beginning, and each element of the Data Explorer and the open data services is there because a water manager or farmer asked for it,” Melton explained. As we played around with the map, it became apparent how much work was put into developing this project. Scientists needed to improve models and assess the accuracy of data, programmers had to develop the user interface and data services, designers needed to make the interface intuitive enough to be impactful, agriculture and environmental groups needed to help validate the model’s accuracy, and users of all types needed to provide requirements and then test the product to make sure their needs were actually met. 

      The OpenET consortium includes NASA, USGS, USDA Agricultural Research Service (ARS), Environmental Defense Fund (EDF), Google Earth Engine, California State University Monterey Bay (CSUMB), Desert Research Institute (DRI), Habitat Seven, Chapman University, Cornell University, University of Nebraska-Lincoln and close to a dozen other universities and experts across the U.S. NASA Ames Research Center and CSUMB have played key roles in the scientific and technical leadership of the effort from the outset, working closely with DRI, EDF and the recently formed non-profit OpenET, Inc. In addition, over 100 partners from the water management, agriculture and conservation community provided user requirements and assisted with the design and testing of the OpenET platform and tools.

      “OpenET would not be possible without the contributions of each one of those partners,” Melton said. “Both on the implementation side and those who are translating the data from OpenET into solutions to long standing challenges.” 

      Map of farmlands showing ET data for 2024. The cooler colors represent higher levels of evapotranspiration (ET), while warmer colors indicate areas with less ET.OpenET
      Models like those built into OpenET can be extremely useful tools for understanding patterns in ET and water use, but are only helpful if their accuracy is known. The OpenET science team recently completed the largest accuracy assessment to date for field-scale satellite-based ET data, comparing the satellite data to ground-based measurements at more than 150 sites across the U.S. Led by John Volk of the Desert Research Institute, the study was published in Nature Water earlier this year. A key finding was that across all sites, an ensemble value computed from six different ET models performed the best overall, leveraging the strengths of each individual satellite-driven model. 

      However, the study also found that some models performed best for particular crop types or regions, which is important information for water managers and farmers who need the most accurate data possible. Publishing the results as an open access study with all data and analysis made publicly available was also important to build trust in the data. While the study highlighted some limitations of the models and priorities for future research, the rigorous and reproducible accuracy assessment helps to build user confidence that they can use the data, while being aware of the expected accuracy for different applications of the data.  




      Bridging the Gap Between Farmers and Resource Managers

      OpenET has already contributed to one significant win for farmers that affects how water use will be monitored and reported in the Sacramento-San Joaquin Delta. 

      This inland river delta covers 750,000 acres and is an important water resource in California, but one where accelerated demand combined with habitat loss and water quality issues has led to major concerns. In the Delta, large portions of the agricultural land are below sea level. Levees protect the fields and contain the river channels that supply water for irrigation. In 2023, the state began requiring farmers to maintain a water meter or measuring device on each diversion, where water is diverted from a river for irrigation. However, this measurement proved challenging and costly as there are thousands of diversions in the Delta, and the measuring equipment was inaccurate and difficult to maintain in this environment. In addition, water users also had to pay for meters at the locations where water that drained from the fields was pumped back over the levees and into the river channels.

      The Sacramento-San Joaquin River Delta is a major water resource in California.Matthew Trump
      “Mostly, what the state was interested in was the consumptive use: how much (water) was actually removed from the supply in that region,” Melton said. “So, it’s the perfect place for using OpenET because evapotranspiration really is the majority of the consumptive use in the Delta, if not all of it.”

      After the launch of OpenET, farmers in the Delta worked with the Delta Watermaster, the California State Water Resources Control Board, the OpenET team and the Delta Measurement Consortium to develop an alternative compliance plan that used OpenET data to help streamline the water use required reporting for this complex region. Once the alternative compliance plan was approved, Forrest Melton and Will Carrara of NASA worked with the state Water Resources Control Board, the Delta Watermaster and water management agencies, and Jordan Harding of HabitatSeven to implement this solution. The Delta Alternative Compliance Plan, also known as the Delta ACP, allows farmers to use OpenET data to estimate their water usage; enabling farmers to complete their use reports in a matter of minutes. 


      “It’s the first time that satellite-based evapotranspiration data has been automatically integrated with a state-managed water reporting system,” Melton said. 
      Last year, more than 70% of farmers in the Bay-Delta region chose to use OpenET and to report their water use through the Delta ACP website, and they expect this percentage to continue to increase over time. 

      “The best part is that it is saving farmers hundreds of hours on preparing and submitting reports, avoiding millions of dollars in costs for farmers to deploy and maintain meters, and giving the state consistent and reproducible data on water use that has been reviewed and approved by the water user,” Melton said. 

      According to Delta Watermaster, Jay Ziegler, this approach has a clear benefit in the unique water flow setting of the Delta. “In reality, OpenET – and the use of publicly accessible data measuring ET is the only way to really discern consumptive use of water in the Delta on a reliable basis,” Ziegler said. “Candidly, we don’t really have a viable “plan B” in the absence of applying Open ET for water use reporting.”
      In reality, OpenET – and the use of publicly accessible data measuring ET is the only way to really discern consumptive use of water in the Delta on a reliable basis.
      Jay ziegler
      Sacramento-San Joaquin Delta Watermaster


      Water Beyond Borders

      As water scarcity is increasingly becoming an urgent issue all around the world, it’s easy to imagine how many countries could benefit from OpenET data. 

      OpenET’s first international partnership is led by Anderson Ruhoff, a professor in Hydrology and Remote Sensing at the Federal University of Rio Grande do Sul, Brazil, where his team developed an evapotranspiration model called geeSEBAL for Brazil’s Water Agency.

      Ruhoff learned about OpenET while he was in the US on a visiting professorship in Nebraska. He was intrigued and reached out to Melton who encouraged him to attend an upcoming conference in Reno, Nevada, where OpenET would be featured. The conference was due to start in just a few days time.

      “So I had to find a last minute ticket to Reno and I’m glad I bought it, because when I arrived there they invited me to join Open ET. It was quite a coincidence,” Ruhoff said, smiling as he remembered the spontaneous decision. “We adapted our model for the US and started to participate in their work.”

      In March, 2024, Ruhoff and OpenET launched an extension of the tool, called OpenET Brazil, with financial support from the Agência Nacional de Águas e Saneamento Básico (ANA), the Brazilian national water agency. The tool, called OpenET Brazil, will have similar goals as OpenET in the U.S., and the data collected will help improve Open ET’s accuracy overall.

      Melton feels this will be a “great test case” for both working with new environmental conditions (in Brazil there frequently is more cloud cover than in the US during key parts of the growing season) and also developing new collaborations.

      “The partnership will help us figure out how we can work with international partners to make the ET data useful,” Melton said. “The key aspect of our approach to geographic expansion is that leading scientists in each country and region, like Dr. Ruhoff, will lead the implementation, accuracy assessment, and the development of applications and partnerships for their country.”

      Brazil has one of the world’s largest sources of freshwater, the Amazon River, and yet it can still be affected by drought. This is partly due to the fact that deforestation in the Amazon Rainforest has an impact on the entire region’s water cycle. Trees draw water up from the soil and during photosynthesis they release vapor into the atmosphere. This water vapor will accumulate and form precipitation. Trees are “basically a huge water pump,” Ruhoff said, and the Amazon Rainforest is large enough that it helps to produce the rainy season. But when deforestation is allowed to happen over large areas, that mechanism is interrupted. As a result of this disruption, the dry season is predicted to intensify, becoming longer and dryer, which in turn can affect crop production in Brazil as well as the rainfall that is critical for sustaining water supplies in Brazil and other areas of South America.

      “Water doesn’t see borders. It doesn’t follow our rules,” Ruhoff said. “Deforestation in one place can affect people thousands of kilometers away.”
      Water doesn’t see borders. It doesn’t follow our rules. Deforestation in one place can affect people thousands of kilometers away.
      Anderson Ruhoff
      Professor of Hydrology and Remote Sensing, Federal University of Rio Grande do Sul, Brazil

      Studying evapotranspiration can reveal the impacts of deforestation with even more clarity. And importantly, it’s also public information. “So not only the farmers and water managers but every citizen can check how much water is being used in their area, especially during drought. It’s democratic information in that way,” Ruhoff said. “I think it’s important to have this information openly available and to try and reach as many people as possible.”

      Melton feels there’s the potential to expand the project, if more people like Ruhoff are there to lead the way.

      “There’s huge potential, but there do need to be stakeholders that come to the table and say that this is something that they’re interested in,” Melton said. “Water is so important and at times so contentious that it’s really important the data is seen as trusted. When there is a local leader, that substantially increases the likelihood that it will be trusted, and most importantly, used to bring people together to develop solutions.”


      The geeSEBAL application that Anderson Ruhoff’s team developed, which now informs the OpenET platform. Science Direct/Anderson Ruhoff

      Even when you live in a water-scarce region like California it’s easy to take water for granted. What platforms like OpenET can do for us, however, is make water, even in its most diffuse form, more visible to everyone.

      Written by Jane Berg and Rachel Sender, co-published with the Bay Area Environmental Research Institute

      To learn more about OpenET, visit https://etdata.org/

      Program Contact:
      Forrest Melton
      NASA Ames Research Center
      forrest.s.melton@nasa.gov

      Share
      Details
      Last Updated Oct 14, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      3 min read NASA Activates Resources to Help Assess Impacts from Hurricane Milton
      Article 2 days ago 1 min read RCRA Permit Modification
      Article 3 days ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A SpaceX Falcon Heavy rocket with the Europa Clipper spacecraft aboard is seen at Launch Complex 39A as preparations continue for the mission, Sunday, Oct. 13, at NASA’s Kennedy Space Center in Florida. NASA Find details about the launch sequences for the orbiter, which is targeting an Oct. 14 liftoff on its mission to search for ingredients of life at Jupiter’s moon Europa.
      In less than 24 hours, NASA’s Europa Clipper spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida aboard a Falcon Heavy rocket. Its sights are set on Jupiter’s ice-encased moon Europa, which the spacecraft will fly by 49 times, coming as close as 16 miles (25 kilometers) from the surface as it searches for ingredients of life. 
      Launch is set for 12:06 p.m. EDT on Monday, Oct. 14, with additional opportunities through Nov 6. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur. Plans to launch Europa Clipper on Oct. 10 were delayed due to impacts of Hurricane Milton.
      NASA’s Europa Clipper is the first mission dedicated to studying Jupiter’s icy moon Europa, one of the most promising places in our solar system to find an environment suitable for life outside of Earth. With its massive solar arrays extended, Europa Clipper could span a basketball court (100 feet, or 30.5 meters, tip to tip). In fact, it’s the largest spacecraft NASA has ever built for a planetary mission. The journey to Jupiter is a long one — 1.8 billion miles (2.9 billion kilometers) — and rather than taking a straight path there, Europa Clipper will loop around Mars and then Earth, gaining speed as it swings past.
      The spacecraft will begin orbiting Jupiter in April 2030, and in 2031 it will start making those 49 science-focused flybys of Europa while looping around the gas giant. The orbit is designed to maximize the science Europa Clipper can conduct and minimize exposure to Jupiter’s notoriously intense radiation.
      But, of course, before any of that can happen, the spacecraft has to leave Earth behind. The orbiter’s solar arrays are folded and stowed for launch. Testing is complete on the spacecraft’s various systems and its payload of nine science instruments and a gravity science investigation. Loaded with over 6,060 pounds (2,750 kilograms) of the propellant that will get Europa Clipper to Jupiter, the spacecraft has been encapsulated in the protective nose cone, or payload fairing, atop a SpaceX Falcon Heavy rocket, which is poised for takeoff from historic Launch Complex 39A.
      Launch Sequences
      The Falcon Heavy has two stages and two side boosters. After the side boosters separate, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Europa Clipper escape Earth’s gravity, will fire its engine.
      Technicians encapsulated NASA’s Europa Clipper spacecraft inside payload fairings on Wednesday, Oct. 2, at NASA’s Kennedy Space Center in Florida. The fairings will protect the spacecraft during launch as it begins its journey to explore Jupiter’s icy moon Europa. NASA/Ben Smegelsky Once the rocket is out of Earth’s atmosphere, about 50 minutes after launch, the payload fairing will separate from its ride, split into two halves, and fall safely back to Earth, where it will be recovered and reused. The spacecraft will then separate from the upper stage about an hour after launch. Stable communication with the spacecraft is expected by about 19 minutes after separation from the rocket, but it could take somewhat longer.
      About three hours after launch, Europa Clipper will deploy its pair of massive solar arrays, one at a time, and direct them at the Sun.
      Mission controllers will then begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected.
      While Europa Clipper is not a life-detection mission, it will tell us whether Europa is a promising place to pursue an answer to the fundamental question about our solar system and beyond: Are we alone?
      Scientists suspect that the ingredients for life — water, chemistry, and energy — could exist at the moon Europa right now. Previous missions have found strong evidence of an ocean beneath the moon’s thick icy crust, potentially with twice as much liquid water as all of Earth’s oceans combined. Europa may be home to organic compounds, which are essential chemical building blocks for life. Europa Clipper will help scientists confirm whether organics are there, and also help them look for evidence of energy sources under the moon’s surface.
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit at Jupiter as it passes over the gas giant’s icy moon Europa (lower right). Scheduled to arrive at Jupiter in April 2030, the mission will be the first to specifically target Europa for detailed science investigation. NASA/JPL-Caltech More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Marshall Space Flight Center in Huntsville, Alabama; and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      europa.nasa.gov
      8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place Get the Europa Clipper Press Kit News Media Contacts
      Meira Bernstein / Karen Fox
      NASA Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      2024-139
      Share
      Details
      Last Updated Oct 13, 2024 Related Terms
      Europa Clipper Astrobiology Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 16 hours ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument
      Article 3 days ago 5 min read Does Distant Planet Host Volcanic Moon Like Jupiter’s Io?
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...