Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:42:11 Watch the latest updates on ESA’s Fly! Feasibility Study with Daniel Neuenschwander, ESA Director of Human and Robotic Exploration, John McFall, Member of the ESA Astronaut Reserve & Fly! Subject Matter Expert, Jerome Reineix, Fly! Study Manager, and Alessandro Alcibiade, Fly! Flight Surgeon.
      Announced in November 2022 during the Ministerial Council held in Paris, France, this unique and groundbreaking study is aimed at understanding and challenging the limitations posed by physical disabilities to human spaceflight. Concluded in late 2024, the Fly! Feasibility Study successfully demonstrated it is technically feasible to fly someone with a physical disability, like John’s, on a six-month mission to the International Space Station as a fully integrated crew member. It underpinned the desire to ensure that space exploration is not limited by physical constraints and that every individual can contribute to our collective understanding of the cosmos and of the benefits of spaceflight for life on Earth.
      The end of the feasibility study marks the start of the next phase: Fly! Mission Ready . This is an essential step to carry out the first long-term mission for an astronaut with a physical disability.
      View the full article
    • By NASA
      During the Artemis II mission to the Moon, NASA astronauts Reid Wiseman and Victor Glover will take control and manually fly Orion for the first time, evaluating the handling qualities of the spacecraft during a key test called the proximity operations demonstration. This is how to fly Orion.
      On NASA’s Artemis II test flight, the first crewed mission under the agency’s Artemis campaign, astronauts will take the controls of the Orion spacecraft and periodically fly it manually during the flight around the Moon and back. The mission provides the first opportunity to ensure the spacecraft operates as designed with humans aboard, ahead of future Artemis missions to the Moon’s surface.

      The first key piloting test, called the proximity operations demonstration, will take place after the four crew members — NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen — are safely in space, about three hours into the mission. To evaluate the spacecraft’s manual handling qualities, the crew will pilot Orion to approach and back away from the detached upper stage of the SLS (Space Launch System) rocket.

      Crew members participating in the demonstration will use two different controllers, called rotational and translational hand controllers, to steer the spacecraft. Three display screens provide the astronauts with data, and another device, called the cursor control device, allows the crew to interact with the displays.

      Astronauts will use the rotational hand controller (RHC), gripped in the right hand, to rotate the spacecraft. It controls Orion’s attitude, or the direction the spacecraft is pointing. If the crew wants to point Orion’s nose left, the RHC is twisted left – for nose right, they will twist the RHC right. Similarly, the RHC can control the nose to pitch up or down or roll right or left. “On Artemis II, most of the time the spacecraft will fly autonomously, but having humans aboard is a chance to help with future mission success,” said Reid Wiseman. “If something goes wrong, a crewmember can jump on the controls and help fix the problem. One of our big goals is to check out this spacecraft and have it completely ready for our friends on Artemis III.”

      The commander and pilot seats are each equipped with a rotational hand controller (RHC), gripped in the right hand, to rotate the spacecraft. It controls Orion’s attitude, or the direction the spacecraft is pointing. If the crew wants to point Orion’s nose left, the RHC is twisted left — for nose right, they will twist the RHC right. Similarly, the RHC can control the nose to pitch up or down or roll right or left.

      The translational hand controller (THC), located to the right or left of the display screens, will move Orion from one point to another. To move the spacecraft forward, the crew pushes the controller straight in — to back up, they will pull the controller out. And similarly, the controller can be pushed up or down and left or right to move in those directions.

      When the crew uses one of the controllers, their command is detected by Orion’s flight software, run by the spacecraft’s guidance, navigation, and control system. The flight software was designed, developed, and tested by Orion’s main contractor, Lockheed Martin.
      The crew will use translational hand controller (THC), located to the right or left of the display screens, will move Orion from one point to another. To move the spacecraft forward, the crew pushes the controller straight in – to back up, they will pull the controller out. And similarly, the controller can be pushed up or down and left or right to move in those directions. “We’re going to perform flight test objectives on Artemis II to get data on the handling qualities of the spacecraft and how well it maneuvers,” said Jeffrey Semrau, Lockheed Martin’s manual controls flight software lead for Artemis missions. “We’ll use that information to upgrade and improve our control systems and facilitate success for future missions.”

      Depending on what maneuver the pilot has commanded, Orion’s software determines which of its 24 reaction control system thrusters to fire, and when. These thrusters are located on Orion’s European-built service module. They provide small amounts of thrust in any direction to steer the spacecraft and can provide torque to allow rotation control.

      The cursor control device allows the crew to interact with the three display screens that show spacecraft data and information. This device allows the crew to interact with Orion even under the stresses of launch or entry when gravitational forces can prevent them from physically reaching the screens.
      The cursor control device allows the crew to interact with the three display screens that show spacecraft data and information. This device allows the crew to interact with Orion even under the stresses of launch or entry when gravitational forces can prevent them from physically reaching the screens. Next to Orion’s displays, the spacecraft also has a series of switches, toggles, and dials on the switch interface panel. Along with switches the crew will use during normal mission operations, there is also a backup set of switches they can use to fly Orion if a display or hand controller fails.

      “This flight test will simulate the flying that we would do if we were docking to another spacecraft like our lander or to Gateway, our lunar space station,” said Victor Glover. “We’re going to make sure that the vehicle flies the way that our simulators approximate. And we’re going to make sure that it’s ready for the more complicated missions ahead.”

      The approximately 10-day Artemis II flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, and supporting ground systems, for the first time with astronauts and will pave the way for lunar surface missions.
      View the full article
    • By NASA
      NASA On April 21, 1972, NASA astronaut John W. Young, commander of the Apollo 16 mission, took a far-ultraviolet photo of Earth with an ultraviolet camera. Young’s original black-and-white picture was printed on Agfacontour professional film three times, with each exposure recording only one light level. The three light levels were then colored blue (dimmest), green (next brightest), and red (brightest), resulting in the enhanced-color image seen here.
      Dr. George Carruthers, a scientist at the Naval Research Laboratory, developed the ultraviolet camera – the first Moon-based observatory – for Apollo 16. Apollo 16 astronauts placed the observatory on the Moon in April 1972, where it sits today on the Moon’s Descartes highland region, in the shadow of the lunar module Orion.
      Image credit: NASA
      View the full article
    • By NASA
      A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
      As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      “The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
      Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
      This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
      “Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
      The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include: 
      Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.  Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji    
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...