Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Jan. 9, 1990, space shuttle Columbia took off on its ninth flight, STS-32, from NASA’s Kennedy Space Center (KSC) in Florida. Its five-person crew of Commander Daniel Brandenstein, Pilot James Wetherbee, and Mission Specialists Bonnie Dunbar, Marsha Ivins, and David Low flew a then record-breaking 11-day mission to deploy the Syncom IV-F5 communications satellite for the U.S. Navy and retrieve the Long-Duration Exposure Facility (LDEF). Astronauts aboard a shuttle mission in 1984 deployed the LDEF and scientists eagerly awaited the return of their 57 experiments to study the effects of nearly six years exposure to the low Earth orbit environment. The crew also conducted several middeck experiments in biotechnology and materials processing and used an echocardiograph to study changes in their hearts. 
      The STS-32 crew of Mission Specialist Bonnie Dunbar, left, Commander Daniel Brandenstein, Pilot James Wetherbee, and Mission Specialists Marsha Ivins and David Low. The STS-32 crew patch. The Long Duration Exposure Facility during its deployment on the STS-41C mission in 1984.  In November 1988, NASA announced Brandenstein, Wetherbee, Dunbar, Ivins, and Low as the STS-32 crew for the flight then planned for November 1989. Brandenstein, from the Class of 1978, had flown twice before, as pilot on STS-8 in August-September 1983 and commander of STS-51G in June 1985. Dunbar, selected in 1980, had flown once before on STS-61A in October-November 1985. For Wetherbee, Ivins, and Low, all selected in 1984, STS-32 marked their first spaceflight. During the second day of their planned 10-day mission, the astronauts would deploy the Syncom IV-F5, also known as Leasat-5, communications satellite for the U.S. Navy. The main focus of the flight involved the retrieval of LDEF, deployed by the STS-41C crew in April 1984. The original plan had LDEF, containing 57 science and technology experiments, retrieved by the STS-51D crew in February 1985. Delays in the shuttle program first pushed the retrieval to STS-61I in September 1986, and then the Challenger accident delayed it to STS-32. The facility ended up staying in orbit nearly six years instead of the originally intended 10 months. The crew rounded out the mission by conducting a series of middeck science and medical experiments. 
      Space shuttle Columbia rolls out to its launch pad on a foggy morning. NASA scientist John Charles, at rear, trains astronauts David Low, left, and Bonnie Dunbar, supine, in the operation of a cardiovascular experiment. The STS-32 crew exits crew quarters for the ride to Launch Pad 39A. Columbia returned to KSC on Aug. 21, 1989, following STS-28’s landing at Edwards Air Force Base (AFB) in California, and workers towed it to the Orbiter Processing Facility (OPF) the next day. They made 26 modifications to the orbiter, including the installation of the Remote Manipulator System (RMS), or robotic arm, and a fifth set of liquid hydrogen and liquid oxygen tanks to extend the vehicle’s duration in space. Rollover to the nearby Vehicle Assembly Building took place on Nov. 16, where Columbia joined its External Tank and twin Solid Rocket Boosters (SRB) on refurbished Mobile Launch Platform 3, last used in 1975. Rollout took place on Nov. 28 to Launch Pad 39A, newly refurbished since its previous launch in 1986.  
      On Dec. 1, engineers and the astronaut crew completed the Terminal Countdown Demonstration Test, a dress rehearsal for the planned Dec. 18 launch. Based on that date and the mission’s planned 10-day duration, the STS-32 crew would have spent Christmas in space, only the third American crew and the first space shuttle crew to do so. However, unfinished work on Pad 39A delayed the launch into January 1990. Trajectory specialists had estimated that due to orbital decay, LDEF would reenter the Earth’s atmosphere by March 1990, so a timely launch remained crucial for mission success. The countdown began on Jan. 4 for an expected Jan. 8 launch, with the crew arriving at KSC on Jan. 5. 

      Liftoff of space shuttle Columbia on STS-32. The deployment of the Syncom IV-F5 satellite. Syncom following deployment. Cloudy skies scrubbed the first launch attempt on Jan. 8. Liftoff took place the next day at 7:35 a.m. EST from Launch Pad 39A, with LDEF 1,500 miles ahead of Columbia. The powered ride to space took 8.5 minutes, placing Columbia into a 215-by-38-mile orbit. A burn of the two Orbiter Maneuvering System (OMS) engines 40 minutes later changed the orbit to the desired 222-by-180-mile altitude. The crew opened the shuttle’s payload bay doors and deployed its radiators. The major activities for the first day in space involved the checkout of the RMS and the first rendezvous maneuver in preparation for the LDEF grapple three days later. The astronauts also activated four of the middeck experiments. On the mission’s second day, Low deployed the 15,000-pound Syncom satellite, releasing it in a frisbee motion out of the payload bay. The satellite extended its antenna, stabilized itself, and 40 minutes after deployment, fired its engine for the first burn to send it to its geostationary orbit. 

      The Long Duration Exposure Facility (LDEF) during the rendezvous. STS-32 astronaut Bonnie Dunbar has grappled LDEF with the Remote Manipulator System. Dunbar lowers LDEF into the payload bay. Following the Syncom deploy, the crew turned its attention to the rendezvous with LDEF while also continuing the middeck experiments. On Flight Day 3, they completed three rendezvous burns as they steadily continued their approach to LDEF. Soon after awakening on Flight Day 4, the astronauts spotted LDEF appearing as a bright star. After the first of four rendezvous burns, Columbia’s radar locked onto the satellite. As they continued the approach, with three more burns carried out successfully, Dunbar activated the RMS in preparation for the upcoming grapple. Brandenstein took over manual control of Columbia for the final approach and parked the shuttle close enough to LDEF for Dunbar to reach out with the 50-foot arm and grapple the satellite. Brandenstein reported, “We have LDEF.”  
      For the next four hours, with Wetherbee flying the orbiter and Dunbar operating the arm, Ivins performed a comprehensive photo survey of LDEF, documenting the effects of nearly six years of space exposure on the various experiments. The survey completed, Dunbar slowly and carefully lowered LDEF into the payload bay, and five latches secured it in place for the ride back to Earth. With the two major goals of their mission completed, the astronauts settled down for the remainder of their 10-day mission conducting science experiments. 

      With astronaut David Low acting as an operator, astronaut Bonnie Dunbar serves as a subject for a cardiovascular experiment. Astronaut Marsha Ivins with several cameras testing the effects of spaceflight on different types of film. During the mission, the STS-32 crew conducted several middeck experiments. The Protein Crystal Growth experiment used vapor diffusion to grow 120 crystals of 24 different proteins, for study by scientists following their return to Earth. The Characterization of Neurospora Circadian Rhythm experiment studied whether spaceflight affected the daily cycles of pink bread mold. The Fluid Experiment Apparatus performed materials processing research in the microgravity environment. The astronauts used the American Flight Echocardiograph (AFE) to study changes in their hearts as a result of weightlessness. The crew used the large format IMAX camera to film scenes inside the cabin as well as through the windows, such as the capture of LDEF. 

      Astronaut Daniel Brandenstein holds an inflatable plastic cake given to him by his crew mates in honor of his birthday. The STS-32 crew poses in Columbia’s middeck. On Jan. 17, Brandenstein celebrated his 47th birthday, the fifth American astronaut to do so in space. His crew presented him with an inflatable plastic cake including candles while controllers in Mission Control passed on their birthday wishes as did his wife and teenage daughter. On the same day, NASA announced the selection of its 13th group of astronauts. Among them, engineer Ronald Sega, Dunbar’s husband, as well as the first female shuttle pilot, Eileen Collins, and the first Hispanic woman astronaut, Ellen Ochoa. 

      Columbia touches down at Edwards Air Force Base in California. At the welcome home ceremony at Ellington Field in Houston, director of NASA’s Johnson Space Center Aaron Cohen addresses the crowd as the STS-32 astronauts and their families listen. On Jan. 19, the astronauts awakened for their planned final day in space. However, due to fog at their landing site, Edwards AFB in California, Mission Control first informed them that they would have to spend an extra orbit in space, and finally decided to delay the landing by an entire day. With their experiments already packed, the crew spent a quiet day, looking at the Earth and using up what film still remained. As they slept that night, they passed the record for the longest space shuttle mission, set by STS-9 in 1983.  
      In preparation for reentry, the astronauts donned their orange spacesuits and closed the payload bay doors. A last-minute computer problem delayed reentry by one orbit, then Brandenstein and Wetherbee oriented Columbia into the deorbit attitude, with the OMS engines facing in the direction of travel. Over the Indian Ocean, they fired the two engines for 2 minutes 48 seconds to bring the spacecraft out of orbit. They reoriented the orbiter to fly with its heat shield exposed to the direction of flight as it encountered Earth’s atmosphere at 419,000 feet. The buildup of ionized gases caused by the heat of reentry prevented communications for about 15 minutes but provided the astronauts a great light show. After completing the Heading Alignment Circle turn, Brandenstein aligned Columbia with the runway, and Wetherbee lowered the landing gear. Columbia touched down and rolled to a stop, making the third night landing of the shuttle program and ending a 10-day 21-hour 1-minute flight, the longest shuttle flight up to that time, having completed 172 orbits of the Earth.  
      Other records set by the astronauts on this mission included Brandenstein as the new record holder for most time spent in space by a shuttle crew member – 24 days – and Dunbar accumulating the most time in space by a woman – 18 days – up to that time. Following eight hours of postflight medical testing, the astronauts boarded a jet bound for Houston’s Ellington Field, where they reunited with their families and took part in a welcome home ceremony led by Aaron Cohen, director of NASA’s Johnson Space Center. 

      Columbia returns to NASA’s Kennedy Space Center in Florida atop the Shuttle Carrier Aircraft. Workers lift the Long Duration Exposure Facility from Columbia’s payload bay. Following postlanding inspections, workers placed Columbia, with LDEF still cradled in its payload bay, atop a Shuttle Carrier Aircraft, a modified Boeing-747, and the combination left Edwards on Jan. 25. Following a refueling stop at Monthan Davis AFB in Tucson, an overnight stay at Kelly AFB in San Antonio, and another refueling stop at Eglin AFB in Fort Walton Beach, Florida, Columbia and LDEF arrived back at KSC on Jan. 26. The next day, workers towed Columbia to the OPF and on Jan. 30 lifted LDEF out of its payload bay, in preparation for the detailed study of the effects of nearly six years in space on the 57 experiments it carried. Meanwhile, workers began to prepare Columbia for its next flight, STS-35 in December 1990. 
      Enjoy the crew narrate a video of the STS-32 mission. Read Brandenstein‘s and Dunbar‘s recollections of the STS-32 mission in their oral histories with the JSC History Office. For an overview of the LDEF project, enjoy this video. For detailed information on the results of the LDEF experiments, follow this link. 

      View the full article
    • By European Space Agency
      Image: Snow returns to Mount Fuji View the full article
    • By NASA
      NASA’s HERA (Human Exploration Research Analog) crew members enjoy their first glimpse of the outside after a 45-day stay inside the analog environment. From left to right: Sergii Iakymov, Sarah Elizabeth McCandless, Erin Anderson, and Brandon Kent.NASA/Bill Stafford An all-volunteer crew on a simulated trip to Mars “returned” to Earth on Sept. 23, 2024, after being isolated in a tiny habitat at Johnson Space Center in Houston. Their work is contributing to the science that will propel humanity to the Moon and eventually Mars.
      The HERA missions provide valuable scientific insights into how humans may respond to the confinement, demanding work-life conditions, and remote environments that astronauts may encounter on deep space missions. These insights help NASA prepare for humanity’s next giant leap to the Moon and Mars.

      Campaign 7 Mission 3 started when HERA operations lead Ted Babic rang the bell outside the habitat 10 times, a ceremonial send-off wishing the crew a safe and successful simulated mission to Mars. Seven rings honored the campaign, and three more signaled the mission—continuing a long-standing tradition.   

      At ingress, Anderson, a structural engineer at NASA’s Langley Research Center in Virginia, told HERA’s mission control, “We’re going to take good care of this ship of yours on our journey.”  
      The HERA crew members wave goodbye to friends, family, and support staff before entering the analog environment on Aug. 9, 2024.NASA/James Blair Life on a 45-Day Journey  

      The HERA crew members participated in 18 human health and performance studies, seven of which were led by scientists from outside the United States. These international studies are in collaboration with the United Arab Emirates’ Mohammed Bin Rashid Space Centre and the European Space Agency.  
      HERA crew members inside the analog environment at NASA’s Johnson Space Center in Houston. From left: Sarah Elizabeth McCandless, Brandon Kent, Erin Anderson, and Sergii Iakymov.NASA/Bill Stafford Throughout the simulation, the crew performed a variety of tasks. They harvested plants from a hydroponic garden, grew shrimp, deployed a small cube satellite to simulate data gathering, conducted a virtual reality “walk” on the surface of Mars, and flew simulated drones on the Martian terrain. These activities are designed to immerse the crew in the task-focused mindset of astronauts. NASA scientists then monitor HERA crew to assess how routine tasks, along with isolation and confinement, impact behavior and performance. 

      As their mission progressed, the team experienced longer communication delays with mission control, eventually reaching five-minute lags. This simulates the challenges astronauts might face on Mars, where delays could be up to 20 minutes. Scientists studying HERA crew are interested to see how this particular group builds independent, autonomous workflows, despite this communication delay.  

      Here are some snapshots of crew activities:  
      McCandless holds a skeletal framework of a Mars rover. She is wearing augmented reality glasses that allow her to project various scientific hardware as holograms. The final product will be a Mars rover that she ‘built’ herself. NASA Kent and Anderson, seen through an airlock window separating rooms inside HERA, conduct a virtual reality EVA on the Mars surface. NASA McCandless analyzes geological samples inside HERA’s glove box. Throughout the HERA mission, samples are “collected” on Mars during mock extravehicular activities. NASA/James Blair Anderson holds her coffee cup as she climbs the ladder connecting the first and second floors inside HERA.NASA Kent examines a petri dish for storing swabs of microbes. He and fellow crew members swab surfaces around HERA, then wait a few days to examine any microbes that grow in the dishes. Iakymov examines water quality and temperature in a tank that holds a few triops shrimp that he and his crewmates raised.NASA McCandless and Anderson work out on HERA’s second floor. They are holding power blocks, dumbbells equipped with weights that can adjust to a maximum of 35 pounds. The blocks take up less space than a set of regular dumbbells, helping to save space in the tiny habitat.NASA All crew members brought books to accompany them on their journey to the Red Planet, while Kent left behind letters for his two daughters to open each day.   

      McCandless also brought letters from loved ones, along with Legos, her favorite card game, and a vintage iPod.  
      Iakymov, an aerospace engineer with more than 15 years of experience in research and design, is carrying postcards and photos of family and friends.   

      Anderson, who describes herself as a massive space nerd, brought extra socks and “The Never Ending Story,” a book she has cherished throughout her life.   

      The crew all shared appreciation for being part of a mission that contributes to the aspirations of future human space exploration travel.   
      The crew holds up varieties of lettuce grown in hydroponic units inside HERA. NASA Returning to Earth  

      As the mission neared its end, McCandless and Anderson participated in a Groundlink—a live session connecting them with middle school students in a classroom in Coconut Grove, Florida, and in Olathe, Kansas. Groundlinks provide a unique opportunity for students to engage directly with crew members and learn about the realities of long-duration missions. 

      The students asked the crew about life inside the habitat, the challenges of isolation, and what it might be like to live on Mars. They were also curious about the crew’s favorite foods and activities. McCandless shared her love for cheddar crisps and freeze-dried Pad Thai and proudly showed off favorite sports teams from her home state of Kansas, much to the cheers of the crowd. Anderson displayed the massive collection of comics and fantasy books that she read inside the habitat.  

      In the late afternoon of Sept. 23, 2024, the crew egressed from HERA, marking the end of their 45-day simulated mission to Mars. After stepping out of the habitat, the crew expressed gratitude for the opportunity and reflected on the mission’s significance. 

      “Following our safe passage to Mars, and our safe return to Earth, as the crew of Campaign 7, Mission 3, we hereby officially transfer this exploration vessel to the flight analogs operations team,” said Kent. “We hope this vessel continues to serve as a safe home for future HERA crews.” 

      Want to Participate in HERA?  

      NASA is actively seeking healthy, non-smoking volunteers, aged 30 to 55, for future HERA missions. Volunteers, who will be compensated for their participation, must pass a physical and psychological assessment to qualify.  

      For those inspired to take part in this groundbreaking research, opportunities to join future HERA missions await:
      https://analogstudies.jsc.nasa.gov 
      View the full article
    • By NASA
      Podcast art for Universo curioso de la NASA, the agency’s first podcast in Spanish, which returns for a second season in September 2024. Credits: NASA / Krystofer Kim Lee este comunicado de prensa en español aquí.
      In celebration of Hispanic Heritage Month, NASA is releasing new content for Universo curioso de la NASA, the agency’s first Spanish-language podcast, now in its second season. A five-week season starts Tuesday with new episodes released weekly.
      Listen to the preview of the second season of Universo curioso de la NASA.
      In each episode, Universo curioso highlights the contributions of NASA’s Hispanic and Latino workforce to the agency’s work in Earth and space exploration for the benefit of all.
      “Through the Universo curioso de la NASA podcast, we are thrilled to tell the story of NASA’s efforts to open space to more people from across the world,” said Tonya McNair, deputy associate administrator for NASA’s Space Operations Mission Directorate in Washington. “In the second season, you’ll hear from NASA’s Hispanic and Latino workforce, like flight director Diana Trujillo and astronaut Marcos Berríos, helping lead some of the agency’s most vital space exploration missions and inspiring the world through discovery.”
      Episodes focus on some of NASA’s top missions, bringing the wonder of exploration, space technology, and scientific discoveries to Spanish-speaking audiences around the world. 
      “This podcast highlights NASA’s dedication to making knowledge available to all, regardless of their native language,” said Shahra Lambert, NASA senior advisor for engagement. “By sharing the excitement of NASA’s missions in the second most spoken language in the U.S. and around the world, we are amplifying our outreach and possibly paving the way for a more diverse STEM workforce in the future.”
      The first episode of Universo curioso ran in 2021, as part of the agency’s Spanish coverage of the launch of its James Webb Space Telescope. In 2023, the show was selected as a “Podcast We Love” by Apple Podcasts Latin America.
      Hosted by Noelia González, communications specialist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, listeners are invited to go on a journey to one of Jupiter’s icy moons, hear about the first two years of discoveries of the James Webb Space Telescope, as well as learn about an astronaut from Puerto Rico’s and a Colombian flight director’s path to NASA.
      Episodes will cover the upcoming launch of Europa Clipper in October 2024, a mission that aims to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life.
      A complete list of the new episodes, as well as their release dates, is as follows:
      Tuesday, Sept. 17: Introducing the Second Season Tuesday, Sept. 24 Diana Trujillo: From Cali to the Moon and Mars Tuesday, Oct. 1 Europa Clipper: A Poetic Journey to Jupiter’s Moon Tuesday, Oct. 8 Marcos Berríos: How to Become a NASA Astronaut Tuesday, Oct. 15: Exploring Cosmos with Webb Universo curioso de la NASA is a joint initiative of the agency’s Spanish-language communications and audio programs. The new season, as well as previous episodes, are available on Apple Podcasts, Spotify, and NASA’s website.
      Listen to the podcast at:
      https://www.nasa.gov/universo-curioso-de-la-nasa
      -end-
      María José Viñas / Cheryl Warner
      Headquarters, Washington
      240-458-0248 / 202-358-1600
      maria-jose.vinasgarcia@nasa.gov / cheryl.m.warner@nasa.gov
      View the full article
    • By Amazing Space
      Boeing Starliner Returns To Earth EMPTY!
  • Check out these Videos

×
×
  • Create New...