Jump to content

Welcome home Matthias - Crew-3 splashes down


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By European Space Agency
      Image: Proba-2’s glimpse of home View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sol 4225: Sliding Down Horsetail Falls
      This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:21:53 UTC). NASA/JPL-Caltech Earth planning date: Monday, June 24, 2024
      This will be an important week for chemistry on our latest drill sample “Mammoth Lakes 2.”  Curiosity’s primary goal today was a preconditioning of the SAM instrument in preparation for its chemical analysis. Due to the large amounts of power required by SAM, today’s science block was limited to one hour, although it grew a bit at the cost of next sol’s science allocation. Today’s planning only covers one sol (4225), as our usual Wednesday planning day will not have Deep Space Network availability. We will plan 3 sols on Tuesday as a result.
      Over the weekend, the “Mammoth Lakes 2” drill sample was dropped off to CheMin for analysis. Mastcam change detection observations of “Walker Pass 2” and “Finch Lake” were begun and will complete on Sol 4225. Remote science on “Whitebark Pass,” “Quarry Peak,” “Broken Finger Peak,” and “Shout of Relief Pass” completed successfully.  On Sol 4225, the focus for remote science was a ChemCam laser spectroscopic characterization and Mastcam imaging of “Horsetail Falls,” an area near the edge of the “Whitebark Pass” workspace slab. The Navcam image below shows the rough surface of “Horsetail Falls” as a stripe of dark rubbly material near the top just right of center edge of the light colored “Whitebark Pass” slab. “Horsetail Falls” is an example of bedrock texture diversity. This target is named for an iconic 270 ft waterfall emerging from Agnew Lake and easily seen from the June Lake Loop road.  “Shout of Relief Pass” honors the 11000 ft pass on the Sierra High Route trail which is a gateway to much easier terrain for the next 25 miles of the trail. All targets in this area of Mount Sharp are named after the Bishop geological quadrangle in the High Sierra and Owens Valley of California. ChemCam RMI will also image an 11×1 mosaic of the nearby channel floor where there are interesting color variations.  Atmospheric observations in this science block consist of a dust devil survey.  In the next plan, SAM will complete its initial analysis. Based on the SAM and CheMin results, the team will then decide whether to do more chemistry at this intriguing location or continue our drive up Mount Sharp.
      Written by Deborah Padgett, Curiosity Operations Product Generation Subsystem Lead Engineer at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jun 25, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4222-4224: A Particularly Prickly Power Puzzle


      Article


      4 days ago
      2 min read A Bright New Abrasion
      Last week, Perseverance arrived at the long-awaited site of Bright Angel, named for being a…


      Article


      5 days ago
      6 min read Sols 4219-4221: It’s a Complex Morning…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Artist’s concept of a previously proposed possible planet, HD 26965 b – often compared to the fictional “Vulcan” in the Star Trek universe. Credit: JPL-Caltech The discovery
      A planet thought to orbit the star 40 Eridani A – host to Mr. Spock’s fictional home planet, Vulcan, in the “Star Trek” universe – is really a kind of astronomical illusion caused by the pulses and jitters of the star itself, a new study shows.
      Key facts
      The possible detection of a planet orbiting a star that Star Trek made famous drew excitement and plenty of attention when it was announced in 2018. Only five years later, the planet appeared to be on shaky ground when other researchers questioned whether it was there at all. Now, precision measurements using a NASA-NSF instrument, installed a few years ago atop Kitt Peak in Arizona, seem to have returned the planet Vulcan even more definitively to the realm of science fiction.
      Details
      Two methods for detecting exoplanets – planets orbiting other stars – dominate all others in the continuing search for strange new worlds. The transit method, watching for the tiny dip in starlight as a planet crosses the face of its star, is responsible for the vast majority of detections. But the “radial velocity” method also has racked up a healthy share of exoplanet discoveries. This method is especially important for systems with planets that don’t, from Earth’s point of view, cross the faces of their stars. By tracking subtle shifts in starlight, scientists can measure “wobbles” in the star itself, as the gravity of an orbiting planet tugs it one way, then another. For very large planets, the radial velocity signal mostly leads to unambiguous planet detections. But not-so-large planets can be problematic.
      Even the scientists who made the original, possible detection of planet HD 26965 b – almost immediately compared to the fictional Vulcan – cautioned that it could turn out to be messy stellar jitters masquerading as a planet. They reported evidence of a “super-Earth” – larger than Earth, smaller than Neptune – in a 42-day orbit around a Sun-like star about 16 light-years away. The new analysis, using high-precision radial velocity measurements not yet available in 2018, confirms that caution about the possible discovery was justified.
      The bad news for Star Trek fans comes from an instrument known as NEID, a recent addition to the complex of telescopes at Kitt Peak National Observatory. NEID, like other radial velocity instruments, relies on the “Doppler” effect: shifts in the light spectrum of a star that reveal its wobbling motions. In this case, parsing out the supposed planet signal at various wavelengths of light, emitted from different levels of the star’s outer shell, or photosphere, revealed significant differences between individual wavelength measurements – their Doppler shifts – and the total signal when they were all combined. That means, in all likelihood, the planet signal is really the flickering of something on the star’s surface that coincides with a 42-day rotation – perhaps the roiling of hotter and cooler layers beneath the star’s surface, called convection, combined with stellar surface features such as spots and “plages,” which are bright, active regions. Both can alter a star’s radial velocity signals.
      While the new finding, at least for now, robs star 40 Eridani A of its possible planet Vulcan, the news isn’t all bad. The demonstration of such finely tuned radial velocity measurements holds out the promise of making sharper observational distinctions between actual planets and the shakes and rattles on surfaces of distant stars.
      Fun facts
      Even the destruction of Vulcan has been anticipated in the Star Trek universe. Vulcan was first identified as Spock’s home planet in the original 1960s television series. But in the 2009 film, “Star Trek,” a Romulan villain named Nero employs an artificial black hole to blow Spock’s home world out of existence.
      The discoverers
      A science team led by astronomer Abigail Burrows of Dartmouth College, and previously of NASA’s Jet Propulsion Laboratory, published a paper describing the new result, “The death of Vulcan: NEID reveals the planet candidate orbiting HD 26965 is stellar activity,” in The Astronomical Journal in May 2024 (Note: HD 26965 is an alternate designation for the star, 40 Eridani A.)
      View the full article
    • By NASA
      NASA Fifty-five years ago today, NASA astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart splashed down 4.5 nautical miles from the USS Guadalcanal, concluding a successful 10-day Earth-orbital mission in space. In this image from March 13, 1969, a recovery helicopter hovers above the Apollo 9 spacecraft; the astronauts were still inside the command module.
      Apollo 9 was the first crewed flight of the command/service module along with the lunar module. The mission’s three-person crew tested several aspects critical to landing on the Moon including the lunar module’s engines, backpack life support systems, navigation systems, and docking maneuvers.
      See more photos from Apollo 9.
      Image Credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...