Members Can Post Anonymously On This Site
DAF COVID-19 Statistics - May 3, 2022
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Spies a Spiral That May Be Hiding an Imposter
The spiral galaxy UGC 5460 shines in this NASA/ESA Hubble Space Telescope image. UGC 5460 sits about 60 million light-years away in the constellation Ursa Major. ESA/Hubble & NASA, W. Jacobson-Galán, A. Filippenko, J. Mauerhan
Download this image
The sparkling spiral galaxy gracing this NASA/ESA Hubble Space Telescope image is UGC 5460, which sits about 60 million light-years away in the constellation Ursa Major. This image combines four different wavelengths of light to reveal UGC 5460’s central bar of stars, winding spiral arms, and bright blue star clusters. Also captured in the upper left-hand corner is a far closer object: a star just 577 light-years away in our own galaxy.
UGC 5460 has hosted two recent supernovae: SN 2011ht and SN 2015as. It’s because of these two stellar explosions that Hubble targeted this galaxy, collecting data for three observing programs that aim to study various kinds of supernovae.
SN 2015as was as a core-collapse supernova: a cataclysmic explosion that happens when the core of a star far more massive than the Sun runs out of fuel and collapses under its own gravity, initiating a rebound of material outside the core. Hubble observations of SN 2015as will help researchers understand what happens when the expanding shockwave of a supernova collides with the gas that surrounds the exploded star.
SN 2011ht might have been a core-collapse supernova as well, but it could also be an impostor called a luminous blue variable. Luminous blue variables are rare stars that experience eruptions so large that they can mimic supernovae. Crucially, luminous blue variables emerge from these eruptions unscathed, while stars that go supernova do not. Hubble will search for a stellar survivor at SN 2011ht’s location with the goal of revealing the explosion’s origin.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hubble’s Galaxies
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
How to Attend
The workshop will be hosted by NASA Jet Propulsion Laboratory.
Virtual and in-person attendance are available. Registration is required for both. (Link coming soon!)
Virtual attendees will receive connection information one week before the workshop.
Background, Goals and Objectives
The NASA Engineering and Safety Center (NESC) is conducting an assessment of the state of cold capable electronics for future lunar surface missions. The intent is to enable the continuous use of electronics with minimal or no thermal management on missions of up to 20 years in all regions of the lunar surface, e.g., permanently shadowed regions and equatorial. The scope of the assessment includes: capture of the state of cold electronics at NASA, academia, and industry; applications and challenges for lunar environments; gap analyses of desired capabilities vs state of the art/practice; guidance for cold electronics selection, evaluation and qualification; and recommendations for technology advances and follow-on actions to close the gaps. The preliminary report of the assessment will be available the first week of April 2025 on this website, i.e., 3 weeks prior to the workshop. Attendees are urged to read the report beforehand as the workshop will provide only a limited, high-level summary of the report’s key findings. The goal of the workshop is to capture your feedback with regards to the findings of the report, especially in the areas below: Technologies, new or important studies or data that we missed. Gaps, i.e. requirements vs available capabilities that we missed. Additional recommendations, suggestions, requests, that we missed.
Preliminary Agenda
Day 1, April 30, 2025 8:00 – 9:00 Sign-in 9:00 – 10:00 Introduction – Y. Chen 10:00 – 11:00 Environment and Architectural Considerations – R. Some 11:00 – 12:00 Custom Electronics – M. Mojarradi 12:00 – 13:00 Lunch 13:00 – 14:00 COTS Components – J. Yang-Scharlotta 14:00 – 15:00 Power Architecture – R. Oeftering 15:00 – 15:30 Energy Storage – E. Brandon 15:30 – 17:00 Materials and Packaging and Passives – L. Del Castillo 17:00 – 17:30 Qualification – Y. Chen 18:30 Dinner Day 2, May 1, 2025 8:00 – 9:00 Sign-in 9:00 – 12:00 Review and discussion of key findings 12:00 – 13:00 Lunch 13:00 – 15:00 Follow on work concepts & discussions. Please be prepared to discuss: 15 min each from industry primes and subsystem developers What would you like to see developed and how would it impact your future missions/platforms? 15:00 – 17:30 Follow on work concepts & discussions 15 min each from technology & component developers, academia, government agencies, etc. What would you like to be funded to do and what are benefits to NASA/missions? 17:00 – 17:30 Wrap up – Y. Chen Points of Contact
If you have any questions regarding the workshop, please contact Roxanne Cena at Roxanne.R.Cena@jpl.nasa.gov and Amy K. Wilson at Amy.K.Wilson@jpl.nasa.gov
Share
Details
Last Updated Feb 20, 2025 Related Terms
NASA Engineering and Safety Center Explore More
2 min read NESC Key In-Progress Technical Activities
Article 1 week ago 5 min read Mechanical Systems TDT Support Reaches Across NASA Programs
Article 2 months ago 2 min read NESC Assists in Heatshield Investigation
Article 2 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
The Department of the Air Force released the memorandum DEI and Gender Ideology Awards guidance.
View the full article
-
By NASA
Electrical engineer Scott Hesh works on a sub-payload canister at NASA’s Wallops Flight Facility near Chincoteague, Virginia. The cannister will be part of a science experiment and a demonstration of his Swarm Communications technology.Credits: NASA’s Wallops Flight Facility/Berit Bland Scott Hesh, an electrical engineer at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore, was announced Nov. 2 as the FY22 IRAD Innovator of the Year, an award presented by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
“An electrical engineer with an insatiable curiosity, Scott Hesh and his team have worked hand-in-glove with science investigators since 2017,” said Goddard Chief Technologist Peter Hughes. “He developed a technology to sample Earth’s upper atmosphere in multiple dimensions with more accurate time and location data than previously possible with a sounding rocket.”
Related: NASA Sounding Rockets Launch Multiple Science Payloads
Newly proven technology developed at NASA’s Wallops Flight Facility near Chincoteague, Virginia, turns a single sounding rocket into a hive deploying a swarm of up to 16 instruments. The technology offers unprecedented accuracy for monitoring Earth’s atmosphere and solar weather over a wide area.
Engineers Josh Yacobucci (left) and Scott Hesh test fit a science sensor sub-payload into a Black Brant sounding rocket at Wallops.Credits: NASA’s Wallops Flight Facility/Berit Bland The Internal Research and Development (IRAD) Innovator of the Year award is presented by Goddard’s Office of the Chief Technologist to individuals who demonstrate the best in innovation.
“Scott has this enthusiasm for what he does that I think is really contagious,” Sounding Rocket Program technologist Cathy Hesh said. “He’s an electrical engineer by education, but he has such a grasp on other disciplines as well, so he’s sort of like a systems engineer. If he wants to improve something, he just goes out and learns all sorts of things that would be beyond the scope of his discipline.”
Mechanical engineer Josh Yacobucci has worked with Scott Hesh for more than 15 years, and said he always learns something when they collaborate.
“Scott brings this great perspective,” Yacobucci said. “He could help winnow out things in my designs that I hadn’t thought of.”
“For his interdisciplinary leadership resulting in game-changing improvements for atmospheric and solar science capabilities,” Hughes said, “Scott Hesh deserves Goddard’s Innovator of the Year Award.”
By Karl B. Hille
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By NASA
Four individuals with NASA affiliations have been named 2022 fellows by the American Association for the Advancement of Science (AAAS) in recognition of their scientifically and socially distinguished achievements in the scientific enterprise.
Election as a Fellow by the AAAS Council honors members whose efforts on behalf of the advancement of science or its applications in service to society have distinguished them among their peers and colleagues. The 2022 Fellows class includes 508 scientists, engineers, and innovators spanning 24 scientific disciplines.
Rita Sambruna from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, was recognized in the AAAS Section on Astronomy, and Jennifer Wiseman, also from Goddard, was recognized in the AAAS Section on Physics. Dorothy Peteet of NASA’s Goddard Institute for Space Studies (GISS) in New York was honored in the AAAS section on Earth Science. Erik Conway of NASA’s Jet Propulsion Laboratory (JPL) in southern California was honored for distinguished contributions and public outreach to the history of science and understanding of contemporary science and science policy.
Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.Courtesy of Rita M. Sambruna Rita Sambruna
Dr. Rita Sambruna is the acting deputy director of the Science and Exploration Directorate and the deputy director of the Astrophysics Division at Goddard. She also promotes increased participation of underrepresented groups in science.
She worked with a team to position Goddard to lead the decadal top priority missions. She led a team to set into place a vision for a Multi-Messenger Astrophysics Science Support Center at Goddard, to lead the astrophysics community in reaping the most from NASA- and ground-based observations of celestial sources.
She came to Goddard in 2005 to work on multiwavelength observations of jets using the Fermi Gamma-ray Space Telescope and other NASA capabilities. From 2010 to 2020 she worked at NASA Headquarters, Washington, as a program scientist for astrophysics. Her research interests include relativistic jets, physics of compact objects, supermassive black holes in galaxies, and multiwavelength and multi-messenger astrophysics.
In December 2022, Sambruna was awarded the Honorary Fellowship of the Royal Astronomical Society (RAS) as an internationally acclaimed astrophysicist who embodies the RAS mission in promoting the advancement of science, the increased participation of historically underrepresented groups in astronomy, and a broad interest in astronomy. In 2019 she was awarded the NASA Extraordinary Achievement Medal for her leadership on the 2020 Astrophysics Decadal Survey studies. She was named Fellow of the American Physical Society in 2020 and a Fellow of the American Astronomical Society in 2021.
Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible.NASA Jennifer Wiseman
Dr. Jennifer Wiseman is a senior astrophysicist at Goddard and a Senior Fellow at Goddard, where she serves as the senior project scientist for the Hubble Space Telescope. Her primary responsibility is to ensure that the Hubble mission is as scientifically productive as possible. Previously, Wiseman headed Goddard’s Laboratory for Exoplanets and Stellar Astrophysics. She started her career at NASA in 2003 as the program scientist for Hubble and several other astrophysics missions at NASA Headquarters.
Wiseman’s scientific expertise is centered on the study of star-forming regions in our galaxy using a variety of tools, including radio, optical, and infrared telescopes. She has a particular interest in dense interstellar gas cloud cores, embedded protostars, and their related outflows as active ingredients of cosmic nurseries where stars and their planetary systems are born. In addition to research in astrophysics, Wiseman is also interested in science policy and public science outreach and engagement. She has served as a congressional science fellow of the American Physical Society, an elected councilor of the American Astronomical Society, and a public dialogue leader for AAAS. She enjoys giving talks on the excitement of astronomy and scientific discovery, and has appeared in many science and news venues, including The New York Times, The Washington Post, NOVA, and National Public Radio.
Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.NASA Dorothy Peteet
Dr. Dorothy M. Peteet is a senior research scientist at GISS and an adjunct professor at Columbia University. She directs the Paleoecology Division of the New Core Lab at Lamont Doherty Earth Observatory (LDEO) of Columbia.
In collaboration with GISS climate modelers and LDEO geochemists, she is studying conditions of the Late Pleistocene and Holocene that are archived in sediments from lakes and wetlands. Peteet documents past changes in vegetation, derived from analyses of pollen and spores, plant and animal macrofossils, carbon, and charcoal embedded in sediments. Her research provides local and regional records of ancient vegetational and climate history. One recent focus has been the sequestration of carbon in northern peatlands and coastal marshes: ecosystems that are now vulnerable to climate change and potentially substantial releases of carbon back into the atmosphere.
Peteet also has performed climate modeling experiments to test hypotheses concerning the last glacial maximum and abrupt climate change. She is interested in climate sensitivity and in how past climate changes and ecological shifts might provide insights on future climate change.
Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.NASA Erik Conway
Erik Conway has served as the historian at JPL since 2004. Prior to that, he was a contract historian at NASA’s Langley Research Center in Hampton, Virginia. He is a historian of science and technology, and has written histories of atmospheric science, supersonic transportation, aviation infrastructure, Mars exploration, and climate change denial.
He is the author of nine books, most recently, “A History of Near-Earth Objects Research” (NASA, 2022), and “The Big Myth” (Bloomsbury, 2023). His book “Merchants of Doubt” with Naomi Oreskes was awarded the Helen Miles Davis and Watson Davis prize from the History of Science Society. He received a Guggenheim Fellowship in 2018 and the Athelstan Spilhaus Award from the American Geophysical Union in 2016.
AAAS noted that these honorees have gone above and beyond in their respective disciplines. They bring a broad diversity of perspectives, innovation, curiosity, and passion that will help sustain the scientific field today and into the future. Many of these individuals have broken barriers to achieve successes in their given disciplines.
AAAS is the world’s largest general scientific society and publisher of the Science family of journals.
For information about NASA and agency programs, visit: https://www.nasa.gov
Share
Details
Last Updated Feb 10, 2025 EditorJamie Adkins Related Terms
Goddard Space Flight Center Goddard Institute for Space Studies People of Goddard View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.