Members Can Post Anonymously On This Site
Is the pentagram shaped anomaly found in Algeria of alien origin?
-
Similar Topics
-
By NASA
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on the Red Planet to date. The finding, published Monday in the Proceedings of the National Academy of Sciences, suggests prebiotic chemistry may have advanced further on Mars than previously observed.
Scientists probed an existing rock sample inside Curiosity’s Sample Analysis at Mars (SAM) mini-lab and found the molecules decane, undecane, and dodecane. These compounds, which are made up of 10, 11, and 12 carbons, respectively, are thought to be the fragments of fatty acids that were preserved in the sample. Fatty acids are among the organic molecules that on Earth are chemical building blocks of life.
Living things produce fatty acids to help form cell membranes and perform various other functions. But fatty acids also can be made without life, through chemical reactions triggered by various geological processes, including the interaction of water with minerals in hydrothermal vents.
While there’s no way to confirm the source of the molecules identified, finding them at all is exciting for Curiosity’s science team for a couple of reasons.
Curiosity scientists had previously discovered small, simple organic molecules on Mars, but finding these larger compounds provides the first evidence that organic chemistry advanced toward the kind of complexity required for an origin of life on Mars.
This graphic shows the long-chain organic molecules decane, undecane, and dodecane. These are the largest organic molecules discovered on Mars to date. They were detected in a drilled rock sample called “Cumberland” that was analyzed by the Sample Analysis at Mars lab inside the belly of NASA’s Curiosity rover. The rover, whose selfie is on the right side of the image, has been exploring Gale Crater since 2012. An image of the Cumberland drill hole is faintly visible in the background of the molecule chains. NASA/Dan Gallagher The new study also increases the chances that large organic molecules that can be made only in the presence of life, known as “biosignatures,” could be preserved on Mars, allaying concerns that such compounds get destroyed after tens of millions of years of exposure to intense radiation and oxidation.
This finding bodes well for plans to bring samples from Mars to Earth to analyze them with the most sophisticated instruments available here, the scientists say.
“Our study proves that, even today, by analyzing Mars samples we could detect chemical signatures of past life, if it ever existed on Mars,” said Caroline Freissinet, the lead study author and research scientist at the French National Centre for Scientific Research in the Laboratory for Atmospheres and Space Observations in Guyancourt, France
In 2015, Freissinet co-led a team that, in a first, conclusively identified Martian organic molecules in the same sample that was used for the current study. Nicknamed “Cumberland,” the sample has been analyzed many times with SAM using different techniques.
NASA’s Curiosity rover drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Curiosity used the Mars Hand Lens Imager camera on the rover’s arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inches. The depth of the hole is about 2.6 inches. NASA/JPL-Caltech/MSSS Curiosity drilled the Cumberland sample in May 2013 from an area in Mars’ Gale Crater called “Yellowknife Bay.” Scientists were so intrigued by Yellowknife Bay, which looked like an ancient lakebed, they sent the rover there before heading in the opposite direction to its primary destination of Mount Sharp, which rises from the floor of the crater.
The detour was worth it: Cumberland turns out to be jam-packed with tantalizing chemical clues to Gale Crater’s 3.7-billion-year past. Scientists have previously found the sample to be rich in clay minerals, which form in water. It has abundant sulfur, which can help preserve organic molecules. Cumberland also has lots of nitrates, which on Earth are essential to the health of plants and animals, and methane made with a type of carbon that on Earth is associated with biological processes.
Perhaps most important, scientists determined that Yellowknife Bay was indeed the site of an ancient lake, providing an environment that could concentrate organic molecules and preserve them in fine-grained sedimentary rock called mudstone.
“There is evidence that liquid water existed in Gale Crater for millions of years and probably much longer, which means there was enough time for life-forming chemistry to happen in these crater-lake environments on Mars,” said Daniel Glavin, senior scientist for sample return at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a study co-author.
The recent organic compounds discovery was a side effect of an unrelated experiment to probe Cumberland for signs of amino acids, which are the building blocks of proteins. After heating the sample twice in SAM’s oven and then measuring the mass of the molecules released, the team saw no evidence of amino acids. But they noticed that the sample released small amounts of decane, undecane, and dodecane.
Because these compounds could have broken off from larger molecules during heating, scientists worked backward to figure out what structures they may have come from. They hypothesized these molecules were remnants of the fatty acids undecanoic acid, dodecanoic acid, and tridecanoic acid, respectively.
The scientists tested their prediction in the lab, mixing undecanoic acid into a Mars-like clay and conducting a SAM-like experiment. After being heated, the undecanoic acid released decane, as predicted. The researchers then referenced experiments already published by other scientists to show that the undecane could have broken off from dodecanoic acid and dodecane from tridecanoic acid.
The authors found an additional intriguing detail in their study related to the number of carbon atoms that make up the presumed fatty acids in the sample. The backbone of each fatty acid is a long, straight chain of 11 to 13 carbons, depending on the molecule. Notably, non-biological processes typically make shorter fatty acids, with less than 12 carbons.
It’s possible that the Cumberland sample has longer-chain fatty acids, the scientists say, but SAM is not optimized to detect longer chains.
Scientists say that, ultimately, there’s a limit to how much they can infer from molecule-hunting instruments that can be sent to Mars. “We are ready to take the next big step and bring Mars samples home to our labs to settle the debate about life on Mars,” said Glavin.
This research was funded by NASA’s Mars Exploration Program. Curiosity’s Mars Science Laboratory mission is led by NASA’s Jet Propulsion Laboratory in Southern California; JPL is managed by Caltech for NASA. SAM (Sample Analysis at Mars) was built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. CNES (the French Space Agency) funded and provided the gas chromatograph subsystem on SAM. Charles Malespin is SAM’s principal investigator.
By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By USH
On the night of February 23, 2025, residents of Tucumán, Argentina witnessed an astonishing sight during a violent thunderstorm. As a powerful lightning bolt tore through the sky, it briefly illuminated a massive, cigar-shaped object hovering in the storm’s center.
Eyewitnesses described the object as dark, elongated, and solid, standing in stark contrast to the swirling storm clouds around it. Unlike a natural weather phenomenon, the shape appeared structured and deliberate, leading many to speculate that it was a UFO of intelligent design, possibly of extraterrestrial origin.
It is not clear whether the object was struck by the lightning but there have been reports of UFOs being hit by lightning yet remaining unaffected, suggesting they may either harness or withstand immense energy levels.
Some researchers believe that certain UFOs absorb energy from lightning as a means of propulsion or power generation. In past cases, similar sightings have been reported in the presence of electrical storms, further fueling theories that such crafts may recharge their systems using natural energy sources.
It is known that theoretical physics explores the concept of extracting energy from electrical phenomena, such as Tesla’s ideas about wireless energy transmission. If an advanced civilization mastered this, lightning could be a viable energy source.
View the full article
-
By USH
In the depths of the ocean, where countless strange fish and creatures dwell in perpetual darkness, they remain unseen, unless unexpectedly caught. This was the case during an expedition by a Russian deep-sea fisherman, who was stunned when he reeled in a bizarre creature that strikingly resembled an alien’s head.
The eerie catch was made by Roman Fedortsov during an expedition in the northern Pacific Ocean.
The fisherman shared the video of the strange creature with his followers, with viewers comparing the bulbous fish to an extraterrestrial or even Krang, the villain from Teenage Mutant Ninja Turtles.
Fisherman Fedortsov has previously made headlines thanks to other weird and wonderful catches which you can view at Dailymail.
Despite its eerie appearance, the fish was not an alien or a mutant but rather a species known as the smooth lumpsucker, a deep-sea fish recognized for its distinctive, gelatinous look.
View the full article
-
By NASA
Lee esta historia en español aquí
When Rose Ferreira first saw an image of a field of galaxies and galaxy clusters from NASA’s James Webb Space Telescope in July, she “went into the restroom and broke down a little,” she said. This “Deep Field” image showed galaxies not only sharper, but deeper into the universe than a similar image she loved from the Hubble Space Telescope.
“Being able to contribute in any way to the efforts of the team within NASA that released this new Deep Field just felt like such a profound thing for me,” said Ferreira, a student at Arizona State University who interned with NASA this summer. “I was just a little bit in shock for, like, a week.”
Rose Ferreira estudia ciencias planetarias y astronomía en la Universidad Estatal de Arizona.Credits: James Mayer Webb, the largest space science telescope ever, which launched in December 2021, played a big role in Ferreira’s internship at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also supported a series of live news interviews for Webb’s first images and multimedia tasks for NASA’s Spanish-language communications program.
Growing up in the Dominican Republic, Ferreira said she didn’t have access to science education. She was taught skills like cooking and cleaning; she didn’t know NASA existed at that time.
But during the frequent blackouts in her village, when the Moon provided the only light, Rose Ferreira often wondered – what is the Moon all about? “The moonlight is a lot of what I used to see, and I was always so curious about that,” she said. “That obsession is what made me start asking questions.”
When she came to New York, she was placed in an underserved high school that sent her back multiple grades because they weren’t satisfied with her English language skills. She left and earned a GED diploma instead, hoping to go to college faster.
At age 18, Ferreira became homeless in New York and lived in train stations. By working as a home health aide, she was able to earn enough to rent an apartment in Queens and, eventually, get an associate degree.
Life threw other major challenges at her, including getting hit by a car and a cancer diagnosis.
Ferreira ultimately enrolled in a planetary science and astronomy degree program at Arizona State University. She received a “great birthday present” in the spring of 2022: her official acceptance to NASA’s internship program.
Among the highlights of her NASA experience was recording a voice-over in Spanish for a This Week at NASA video. She also served as a panelist at an event for the Minority University Research and Education Project, organized by NASA’s Office of STEM Engagement.
Ferreira dreams of becoming an astronaut and has a shorter-term goal of earning a doctorate. But the internship also fueled her passion for sharing space science with the public. Chatting with Goddard astrophysicist Dr. Michelle Thaller, host of the Webb broadcasts, was especially meaningful to her.
Rose Ferreira, foreground, in the broadcast control room at NASA’s Goddard Space Flight Center in July 2022.Credits: NASA She has this advice for young people who are also interested in pursuing space science: “Coming from a person who had it a bit harder to get there, I think: first, figure out if it is really what you love. And if it is really what you love, then literally find a way to do it no matter who says what.”
Besides Webb, Ferreira is excited about NASA’s Artemis program, which connects with her passion for the Moon. Through Artemis, NASA will send astronauts to establish a long-term presence on and around the Moon. She’s looking forward to what Artemis will uncover about the Moon’s geology and history while the agency uses the Moon to get ready for human exploration of Mars.
“Even when I was living on the streets, the Moon used to be the thing I looked at to calm myself. It’s my sense of comfort, even today when I’m overwhelmed by things,” she said. “It’s like a driving force.”
Written by Elizabeth Landau
NASA Headquarters
View the full article
-
By NASA
Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”
Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
“Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum.
Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 16, 2025 Related Terms
Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.