Jump to content

Recommended Posts

Posted
Cosmic_Kiss_Mission_Overview_card_full.j Video: 00:04:00

German ESA astronaut Matthias Maurer has almost completed his first stay aboard the International Space Station ISS.

Named Cosmic Kiss, the mission began with the third crewed launch of the SpaceX Crew Dragon on 11 November 2021 when Matthias flew to the ISS alongside @NASA astronauts Kayla Barron, Raja Chari and Tom Marshburn, collectively known as Crew-3.

Matthias has now spent around six months in orbit, working on over 35 European and many more international science experiments and taking part in operational procedures. He has also become the 12th ESA astronaut to conduct a spacewalk, or Extra-Vehicular Activity (EVA).

Shortly before the end of his mission, Matthias could also welcome fellow ESA astronaut Samantha Cristoforetti aboard the Space Station, who launched on 28 April as part of Crew-4 and will continue the common journey for Europe in space.

More info on Cosmic Kiss.

This A&B Roll provides a summary of the Cosmic Kiss Mission, which will end shortly with Matthias Maurer’s return to Earth.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA/Hubble & NASA, K. Noll This newly reprocessed image released on April 18, 2025, provides a new view of an enormous, 9.5-light-year-tall pillar of cold gas and dust. Despite its size, it’s just one small piece of the greater Eagle Nebula, also called Messier 16.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      Download this image.
      Image credit: ESA/Hubble & NASA, K. Noll
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s C-130, now under new ownership, sits ready for its final departure from NASA’s Wallops Flight Facility in Virginia, on Friday, April 18, 2025. NASA/Garon Clark NASA’s C-130 Hercules, fondly known as the Herc, went wheels up at 9:45 a.m., Friday, April 18, as it departed from its decade-long home at NASA’s Wallops Flight Facility in Virginia, for the final time. The aircraft is embarking on a new adventure to serve and protect in the state of California where it is now under the ownership of the California Department of Forestry and Fire Protection (CAL FIRE). 
      The transition of the C-130 to CAL FIRE is part of a long-running, NASA-wide aircraft enterprise-management activity to consolidate the aircraft fleet and achieve greater operational efficiencies while reducing the agency’s infrastructure footprint. 
      The C-130 Hercules takes off for the final time from NASA’s Wallops Flight Facility in Virginia.NASA/Garon Clark “Our C-130 and the team behind it has served with great distinction over the past decade,” said David L. Pierce, Wallops Flight Facility director. “While our time with this amazing airframe has come to a close, I’m happy to see it continue serving the nation in this new capacity with CAL FIRE.”  
      The research and cargo aircraft, built in 1986, was acquired by NASA in 2015. Over the past decade, the C-130 supported the agency’s airborne scientific research, provided logistics support and movement of agency cargo, and supported technology demonstration missions. The aircraft logged approximately 1,820 flight hours in support of missions across the world during its time with the agency. 
      Additional aircraft housed at NASA Wallops will be relocated to NASA’s Langley Research Center in Hampton, Virginia, in the coming months. 
      For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops. 
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Apr 18, 2025 EditorOlivia F. LittletonLocationWallops Flight Facility Related Terms
      Wallops Flight Facility Explore More
      4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
      UPDATE March 31, 2025: The third and final rocket of the AWESOME mission launched on Saturday,…
      Article 4 weeks ago 5 min read NASA Super Pressure Balloons Return to New Zealand for Test Flights
      Article 1 month ago 2 min read NASA Wallops Breaks Ground on New Causeway Bridge
      Article 4 days ago View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Spies Cosmic Pillar in Eagle Nebula
      This NASA/ESA Hubble Space Telescope image features a small portion of the Eagle Nebula (Messier 16). Credits:
      ESA/Hubble & NASA, K. Noll As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      New images of NGC 346 and the Sombrero Galaxy have already been published. Now, ESA/Hubble is revisiting the Eagle Nebula (originally published in 2005 as part of Hubble’s 15th anniversary celebrations) with new image processing techniques.
      Unfurling along the length of the image is a pillar of cold gas and dust that is 9.5 light-years tall. As enormous as this dusty pillar is, it’s just one small piece of the greater Eagle Nebula, also called Messier 16. The name Messier 16 comes from the French astronomer Charles Messier, a comet hunter who compiled a catalog of deep-sky objects that could be mistaken for comets.
      This NASA/ESA Hubble Space Telescope image features a towering structure of billowing gas in the Eagle Nebula (Messier 16). The pillar rises 9.5 light-years tall and is 7,000 light-years away from Earth. ESA/Hubble & NASA, K. Noll The name Eagle Nebula was inspired by the nebula’s appearance. The edge of this shining nebula is shaped by dark clouds like this one, giving it the appearance of an eagle spreading its wings.
      Not too far from the region pictured here are the famous Pillars of Creation, which Hubble photographed multiple times, with images released in 1995 and 2015.
      The heart of the nebula, which is located beyond the edge of this image, is home to a cluster of young stars. These stars have excavated an immense cavity in the center of the nebula, shaping otherworldly pillars and globules of dusty gas. This particular feature extends like a pointing finger toward the center of the nebula and the rich young star cluster embedded there.
      The Eagle Nebula is one of many nebulae in the Milky Way that are known for their sculpted, dusty clouds. Nebulae take on these fantastic shapes when exposed to powerful radiation and winds from infant stars. Regions with denser gas are more able to withstand the onslaught of radiation and stellar winds from young stars, and these dense areas remain as dusty sculptures like the starry pillar shown here.
      This towering structure of billowing gas and dark, obscuring dust might only be a small portion of the Eagle Nebula, but it is no less majestic in appearance for it. 9.5 light-years tall and 7000 light-years distant from Earth, this dusty sculpture is refreshed with the use of new processing techniques. The new Hubble image is part of ESA/Hubble’s 35th anniversary celebrations. Credit: ESA/Hubble & NASA, K. Noll, N. Bartmann (ESA/Hubble); Music: Stellardrone – Ascent The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble Eagle Nebula Images and Science
      Eagle Nebula Pillar
      Learn more about and download the image above.


      Hubble’s Messier Catalog: Messier 16 (Eagle Nebula)
      Messier 16, better known as the Eagle Nebula, has provided Hubble with some of its most iconic images.


      Embryonic Stars Emerge from Interstellar “Eggs”
      Eerie, dramatic Hubble pictures show newborn stars emerging from “eggs” – not the barnyard variety – but rather dense, compact pockets of interstellar gas called evaporating gaseous globules (EGGs). 


      The Pillars of Creation: A 3D Multiwavelength Exploration
      This scientific visualization explores the iconic Pillars of Creation in the Eagle Nebula (Messier 16 or M16) using data from NASA’s Hubble and Webb space telescopes.


      Hubble Goes High Def to Revisit the Iconic ‘Pillars of Creation’
      Explore hands-on activities, interactive, lesson plans, educator guides, and other downloadable content about this topic.


      Location of Hubble images in the Eagle Nebula
      This wide-field image of the Eagle Nebula shows the areas Hubble viewed in greater detail with Hubble’s Wide-Field Planetary Camera 2 (WFPC2) in 1995 and Advanced Camera for Surveys (ACS) in 2005.


      The Eagle Has Risen: Stellar Spire in the Eagle Nebula
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.


      Eagle Nebula (M16) Pillar Detail: Portion of Top
      Released in 2005, this Hubble image of a stellar spire was part of Hubble’s 15th anniversary.




      Share








      Details
      Last Updated Apr 18, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble
      bethany.downer@esahubble.org
      Garching, Germany
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae The Universe
      Related Links and Documents
      Hubble’s 35th Anniversary celebrations ESA/Hubble’s 35th Anniversary celebrations Release on ESA’s website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s 35th Anniversary


      View the full article
    • By NASA
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with about 6,700 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      This launch is the 32nd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 12th SpaceX launch under the Commercial Resupply Services-2 (CRS) contract. The first 20 launches were under the original resupply services contract.
      NASA’s live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      NASA’s SpaceX 32nd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA’s SpaceX 32nd commercial resupply mission will launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Arrival & Departure
      The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the zenith port of the station’s Harmony module at approximately 8:20 a.m. Tuesday, April 22. Live coverage NASA’s coverage of the rendezvous and docking will begin at 6:45 a.m on NASA+. NASA astronaut Jonny Kim, Expedition 73 commander and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will monitor the arrival of the spacecraft, which will stay docked to the orbiting laboratory for about one month before splashing down and returning critical science and hardware to teams on Earth.
      Astronauts Jonny Kim of NASA and Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
      Robotic Spacecraft Guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites.NASA Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Protection From Particles
      The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success. NASA During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success.
      The investigation also tests a device for distinguishing between smoke and dust. Aboard the orbital outpost, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Next-Generation Pharmaceutical Nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. NASA The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Better Materials, Better Drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials.NASA The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Helping Plants Grow
      The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis.NASA The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use.
      The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Atomic Clocks in Space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity.NASA An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      Cargo Highlights
      NASA’s SpaceX 32nd commercial resupply mission will carry about 6,700 pounds of cargo to the International Space Station.NASA Hardware
      Launch:
      Catalytic Reactor – The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This unit failed in orbit and is being returned for analysis and refurbishment. This unit is being launched as an in-orbit spare.
        Food Reach Tool Assembly – An L-shaped, hand-held tool that allows crew members to reach packages in the back of the food warmer without having to insert their hands. This tool is launching to replace a unit in orbit. Reducer Cylinder Assembly – A cylinder tank that provides 15 minutes of oxygen to a crew member in case of an emergency. Launching two units as in-orbit spares. Thermal Expansion Device – A device used to allow for thermal expansion of water within the Hydrogen Dome while it is being removed and replaced. Launching to maintain minimum in-orbit spares. Return:
      Urine Processor Assembly Pressure Control and Pump Assembly – This multi-tube purge pump enables the removal of non-condensable gas and water vapor from the distillation assembly within the greater urine processing assembly subsystem. This unit is returning to the ground for repair and refurbishment in support of the legacy environmental control and life support system fleet. Assembly Contingency Transmitter Receiver Assembly – A part of the S-Band Radio Frequency Group, this assembly is a pressurized enclosure that contains electronics for this upper-level assembly. The Radio Frequency Group is used for command, control, and transmission communication for the space station. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during US EVA 92 and will return for repair. High Gain Antenna Feed Assembly – Part of the S-Band Radio Frequency Group, this system features a two-axis, gimballed assembly with a pedestal and a large horn antenna. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair. Low Gain Antenna Sub-Assembly – Part of the S-Band Radio Frequency Group, this sub-assembly consists of a helix antenna that provides a wide field of signal transmission capability. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair.  Planar Reflector Assembly – With an aluminum base and reflective element, visiting spacecraft reflect a laser to compute relative range, velocity, and attitude to the space station. This broken unit was retrieved and replaced by NASA astronaut Suni Williams during U.S. spacewalk 91 and will return for repair. Multifiltration Bed – Supporting the water processor assembly, this spare unit will continue the International Space Station program’s effort to replace a degraded fleet of units in-orbit that improve water quality through a single bed. This unit will return for refurbishment and re-flight. Watch and Engage
      Live coverage of the launch from NASA Kennedy will air at 3:55 a.m. on NASA+..
      For additional information on the mission, visit: https://www.nasa.gov/mission/nasas-spacex-crs-32/
      View the full article
    • By NASA
      6 Min Read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      New three-dimensional (3D) models of objects in space have been released by NASA’s Chandra X-ray Observatory. These 3D models allow people to explore — and print — examples of stars in the early and end stages of their lives. They also provide scientists with new avenues to investigate scientific questions and find insights about the objects they represent.
      These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time.
      However, looking at images and animations is not the only way to experience this data. The four new 3D printable models of Cassiopeia A (Cas A), G292.0+1.8 (G292), Cygnus Loop supernova remnants, and the star known as BP Tau let us experience the celestial objects in the form of physical structures that will allow anyone to hold replicas of these stars and their surroundings and examine them from all angles.
      Cassiopeia A (Cas A)
      Using NASA’s James Webb Space Telescope, astronomers uncovered a mysterious feature within the remnant, nicknamed the “Green Monster,” alongside a puzzling network of ejecta filaments forming a web of oxygen-rich material. When combined with X-rays from Chandra, the data helped astronomers shed light on the origin of the Green Monster and revealed new insights into the explosion that created Cas A about 340 years ago, from Earth’s perspective.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia A "Green Monster" INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia AINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando BP Tau
      X-ray: NASA/CXC/SAO; Optical: PanSTARRS; Image Processing: NASA/CXC/SAO/N. Wolk This 3D model shows a star less than 10 million years old that is surrounded by a disk of material. This class of objects is known as T Tauri stars, named after a young star in the Taurus star-forming region. The model describes the effects of multiple flares, or outbursts that are detected in X-rays by Chandra from one T Tauri star known as BP Tau. These flares interact with the disk of material and lead to the formation of an extended outer atmosphere composed by hot loops, connecting the disk to the developing star.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of BP TauINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando Cygnus Loop
      X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the remains of the explosive death of a massive star. This 3D model is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. The Cygnus Loop is a highly extended, but faint, structure on the sky: At three degrees across, it has the diameter of six full moons.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cygnus LoopINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando G292.0+1.8
      X-ray: NASA/CXC/SAO; Optical:NSF/NASA/DSS; Image Processing This is a rare type of supernova remnant observed to contain large amounts of oxygen. The X-ray image of G292.0+1.8 from Chandra shows a rapidly expanding, intricately structured field left behind by the shattered star. By creating a 3D model of the system, astronomers have been able to examine the asymmetrical shape of the remnant that can be explained by a “reverse” shock wave moving back toward the original explosion.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of G292.0+1.8INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando The 3D models here are the subject of several scholarly papers by Salvatore Orlando of INAF in Palermo, Italy, and colleagues published in The Astrophysical Journal, Astronomy & Astrophysics, and Monthly Notices of the Royal Astronomical Society. Much of this work is also publicly available work on SketchFab.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features visualizations of three supernova remnants and one star. Each is rendered as a composite image, and as a digital 3-dimensional model, presented in separate short video clips. The composite images are two dimensional and static, but the digital models rotate, showcasing their three-dimensionality.
      The first featured supernova is Cassiopeia A. In the X-ray, optical, and infrared composite image, the debris from an exploded star resembles a round purple gas cloud, marbled with streaks of golden light. In the rotating, 3D model, the purple gas cloud is depicted as a flat disk, like a record or CD. Bursting out the front and back of the disk is an orange and white shape similar to a ball of coral, or a head of cauliflower lined with stubby tendrils. Most of the ball, and the majority of the tendrils, appear on one side of the disk. On the opposite side, the shape resembles dollops of thick whipped cream.
      Next in the release is a star known as BP Tau. BP Tau is a developing star, less than 10 million years old, and prone to outbursts or flares. These flares interact with a disk of material that surrounds the young star, forming hot loops of extended atmosphere. In the composite image, BP Tau resembles a distant, glowing white dot surrounded by a band of pink light. The rotating, 3D model is far more dynamic and intriguing! Here, the disk of material resembles a large blue puck with round, ringed, concave surfaces. At the heart of the puck is a small, glowing red orb: the developing star. Shooting out of the orb are long, thin, green strands: the flares. Also emerging from the orb are orange and pink petal-shaped blobs: the loops of extended atmosphere. Together, the orb, strands, and petals resemble an exotic flowering orchid.
      The third celestial object in this release is the supernova remnant called Cygnus Loop. In the composite image, the remnant resembles a wispy cloud in oranges, blues, purples, and whites, shaped like a backwards letter C. The 3D model examines this cloud of interstellar material interacting with the superheated, supernova blast wave. In the 3D model, the Cygnus Loop resembles a bowl with a thick base, and a wedge cut from the side like a slice of pie. The sides of the bowl are rendered in swirled blues and greens. However, inside the thick base, revealed by the wedge-shaped cut, are streaks of red and orange. Surrounding the shape are roughly parallel thin red strands, which extend beyond the top and bottom of the digital model.
      The final supernova featured in this release is G292.0+1.8. The composite image depicts the remnant as a bright and intricate ball of red, blue, and white X-ray gas and debris set against a backdrop of gleaming stars. In the 3D model, the remnant is rendered in translucent icy blue and shades of orange. Here, the rotating shape is revealed to be somewhat like a bulbous arrowhead, or perhaps an iceberg on its side.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      About the Author
      Lee Mohon

      Share
      Details
      Last Updated Apr 16, 2025 Related Terms
      Chandra X-Ray Observatory Astrophysics General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants The Universe Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 5 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 6 hours ago 1 min read Why Do We Grow Plants in Space?
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...