Jump to content

STScI Appoints Head of Newly Created Data Science Mission Office


HubbleSite

Recommended Posts

low_keystone-display-1644-a.png

Dr. Arfon Smith has been selected to lead the newly created Data Science Mission Office at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. The Data Science Mission Head is responsible for maximizing the scientific returns from a huge archive containing astronomical observations from 17 space astronomy missions and ground-based observatories.

Since 2013, Smith has been a project scientist and program manager at GitHub, Inc., the world's largest platform for open source software. His duties included working to develop innovative strategies for sharing data and software in academia. Smith also helped to define GitHub's business strategy for public data products, and he played a key role in establishing the company's first data science and data engineering teams.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s EMIT collected this hyperspectral image of the Amazon River in northern Brazil on June 30 as part of an effort to map global ecosystem biodiversity. The instrument was originally tasked with mapping minerals over deserts; its data is now being used in research on a diverse range of topics. NASA/JPL-Caltech The imaging spectrometer measures the colors of light reflected from Earth’s surface to study fields such as agriculture, hydrology, and climate science.
      Observing our planet from the International Space Station since July 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission is beginning its next act.
      At first the imaging spectrometer was solely aimed at mapping minerals over Earth’s desert regions to help determine the cooling and heating effects that dust can have on regional and global climate. The instrument soon added another skill: pinpointing greenhouse gas emission sources, including landfills and fossil fuel infrastructure.
      Following a mission extension this year, EMIT is now collecting data from regions beyond deserts, addressing topics as varied as agriculture, hydrology, and climate science.
      Imaging spectrometers like EMIT detect the light reflected from Earth, and they separate visible and infrared light into hundreds of wavelength bands — colors, essentially. Scientists use patterns of reflection and absorption at different wavelengths to determine the composition of what the instrument is observing. The approach echoes Isaac Newton’s prism experiments in 1672, in which the physicist discovered that visible light is composed of a rainbow of colors.
      Perched on the International Space Station, NASA’s EMIT can differentiate between types of vegetation to help researchers understand the distribution and traits of plant communities. The instrument collected this data over the mid-Atlantic U.S. on April 23.NASA/JPL-Caltech “Breakthroughs in optics, physics, and chemistry led to where we are today with this incredible instrument, providing data to help address pressing questions on our planet,” said Dana Chadwick, EMIT’s applications lead at NASA’s Jet Propulsion Laboratory in Southern California. 
      New Science Projects
      In its extended mission, EMIT’s data will be the focus of 16 new projects under NASA’s Research Opportunities in Space and Earth Science (ROSES) program, which funds science investigations at universities, research institutions, and NASA.
      For example, the U.S. Geological Survey (USGS) and the U.S. Department of Agriculture’s (USDA) Agricultural Research Service are exploring how EMIT can assess climate-smart agricultural practices. Those practices — winter cover crops and conservation tillage — involve protecting cropland during non-growing seasons with either living plants or dead plant matter to prevent erosion and manage nitrogen.
      Imaging spectrometers are capable of gathering data on the distribution and characteristics of plants and plant matter, based on the patterns of light they reflect. The information can help agricultural agencies incentivize farmers to use sustainable practices and potentially help farmers manage their fields. 
      “We’re adding more accuracy and reducing error on the measurements we are supplying to end users,” said Jyoti Jennewein, an Agricultural Research Service research physical scientist based in Fort Collins, Colorado, and a project co-lead.
      The USGS-USDA project is also informing analytical approaches for NASA’s future Surface Biology and Geology-Visible Shortwave Infrared mission. The satellite will cover Earth’s land and coasts more frequently than EMIT, with finer spatial resolution.
      Looking at Snowmelt
      Another new project will test whether EMIT data can help refine estimates of snowpack melting rates. Such an improvement could inform water management in states like California, where meltwater makes up the majority of the agricultural water supply.
      Imaging spectrometers like EMIT measure the albedo of snow — the percentage of solar radiation it’s reflecting. What isn’t reflected is absorbed, so the observations indicate how much energy snow is taking in, which in turn helps with estimates of snow melt rates. The instruments also discern what’s affecting albedo: snow-grain size, dust or soot contamination, or both.
      For this work, EMIT’s ability to measure beyond visible light is key. Ice is “pretty absorptive at near-infrared and the shortwave infrared wavelengths,” said Jeff Dozier, a University of California, Santa Barbara professor emeritus and the project’s principal investigator.
      Other ROSES-funded projects focus on wildflower blooming, phytoplankton and carbon dynamics in inland waters, ecosystem biodiversity, and functional traits of forests.
      Dust Impacts
      Researchers with EMIT will continue to study the climate effects of dust. When lofted into the air by windstorms, darker, iron-filled dust absorbs the Sun’s heat and warms the surrounding air, while lighter-colored, clay-rich particles do the opposite. Scientists have been uncertain whether airborne dust has overall cooling or warming effects on the planet. Before EMIT, they could only assume the color of particles in a region.
      The EMIT mission is “giving us lab-quality results, everywhere we need to know,” said Natalie Mahowald, the mission’s deputy principal investigator and an Earth system scientist at Cornell University in Ithaca, New York. Feeding the data into Earth system computer models, Mahowald expects to get closer to pinpointing dust’s climate impact as Earth warms.
      Greenhouse Gas Detection
      The mission will continue to identify point-source emissions of methane and carbon dioxide, the greenhouse gases most responsible for climate change, and observations are available through EMIT’s data portal and the U.S. Greenhouse Gas Center.
      The EMIT team is also refining the software that identifies and measures greenhouse-gas plumes in the data, and they’re working to streamline the process with machine-learning automation. Aligning with NASA’s open science initiative, they are sharing code with public, private, and nonprofit organizations doing similar work.
      “Making this work publicly accessible has fundamentally pushed the science of measuring point-source emissions forward and expanded the use of EMIT data,” said Andrew Thorpe, the JPL research technologist heading the EMIT greenhouse gas effort.
      More About EMIT
      The EMIT instrument was developed by NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. Launched to the International Space Station in July 2022, EMIT is on an extended three-year mission in which it’s supporting a range of research projects. EMIT’s data products are available at the NASA Land Processes Distributed Active Archive Center for use by other researchers and the public.
      To learn more about the mission, visit:
      https://earth.jpl.nasa.gov/emit/
      How the new NISAR satellite will track Earth’s changing surface A planet-rumbling Greenland tsunami seen from above News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2024-159
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
      4 min read NASA and Forest Service Use Balloon to Help Firefighters Communicate
      Article 12 mins ago 9 min read The Earth Observer Editor’s Corner: Fall 2024
      On September 18, 2024, the National Oceanic and Atmospheric Administration (NOAA) shared the first images…
      Article 35 mins ago 3 min read Summary of Aura 20th Anniversary Event
      Snippets from The Earth Observer’s Editor’s Corner The last of NASA’s three EOS Flagships –…
      Article 37 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      This photo shows the Optical Telescope Assembly for NASA’s Nancy Grace Roman Space Telescope, which was recently delivered to the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md.NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and supporting structures and electronics. The assembly was delivered Nov. 7. to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the observatory is being built.
      The telescope will focus cosmic light and send it to Roman’s instruments, revealing many billions of objects strewn throughout space and time. Using the mission’s Wide Field Instrument, a 300-megapixel infrared camera, astronomers will survey the cosmos all the way from the outskirts of our solar system toward the edge of the observable universe. Scientists will use Roman’s Coronagraph Instrument to test new technologies for dimming host stars to image planets and dusty disks around them in far better detail than ever before.
      “We have a top-notch telescope that’s well aligned and has great optical performance at the cold temperatures it will see in space,” said Bente Eegholm, optics lead for Roman’s Optical Telescope Assembly at NASA Goddard. “I am now looking forward to the next phase where the telescope and instruments will be put together to form the Roman observatory.”
      In this photo, optical engineer Bente Eegholm inspects the surface of the primary mirror for NASA’s Nancy Grace Roman Space Telescope. This 7.9-foot (2.4-meter) mirror is a major component of the Optical Telescope Assembly, which also contains nine additional mirrors and supporting structures and electronics.NASA/Chris Gunn Designed and built by L3Harris Technologies in Rochester, New York, the assembly incorporates key optics (including the primary mirror) that were made available to NASA by the National Reconnaissance Office. The team at L3Harris then reshaped the mirror and built upon the inherited hardware to ensure it would meet Roman’s specifications for expansive, sensitive infrared observations.
      “The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability,” said Josh Abel, lead Optical Telescope Assembly systems engineer at NASA Goddard.
      The team at Goddard worked closely with L3Harris to ensure these stringent requirements were met and that the telescope assembly will integrate smoothly into the rest of the Roman observatory.
      The assembly’s design and performance will largely determine the quality of the mission’s results, so the manufacturing and testing processes were extremely rigorous. Each optical component was tested individually prior to being assembled and assessed together earlier this year. The tests helped ensure that the alignment of the telescope’s mirrors will change as expected when the telescope reaches its operating temperature in space.
      Then, the telescope was put through tests simulating the extreme shaking and intense sound waves associated with launch. Engineers also made sure that tiny components called actuators, which will adjust some of the mirrors in space, move as predicted. And the team measured gases released from the assembly as it transitioned from normal air pressure to a vacuum –– the same phenomenon that has led astronauts to report that space smells gunpowdery or metallic. If not carefully controlled, these gases could contaminate the telescope or instruments.
      Upon arrival at NASA’s Goddard Space Flight Center, the Optical Telescope Assembly for the agency’s Nancy Grace Roman Space Telescope was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Now, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.NASA/Chris Gunn Finally, the telescope underwent a month-long thermal vacuum test to ensure it will withstand the temperature and pressure environment of space. The team closely monitored it during cold operating conditions to ensure the telescope’s temperature will remain constant to within a fraction of a degree. Holding the temperature constant allows the telescope to remain in stable focus, making Roman’s high-resolution images consistently sharp. Nearly 100 heaters on the telescope will help keep all parts of it at a very stable temperature.
      “It is very difficult to design and build a system to hold temperatures to such a tight stability, and the telescope performed exceptionally,” said Christine Cottingham, thermal lead for Roman’s Optical Telescope Assembly at NASA Goddard.
      Now that the assembly has arrived at Goddard, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.
      With this milestone, Roman remains on track for launch by May 2027.
      “Congratulations to the team on this stellar accomplishment!” said J. Scott Smith, the assembly’s telescope manager at NASA Goddard. “The completion of the telescope marks the end of an epoch and incredible journey for this team, and yet only a chapter in building Roman. The team’s efforts have advanced technology and ignited the imaginations of those who dream of exploring the stars.”
      Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      claire.andreoli@nasa.gov
      301-286-1940
      Explore More
      3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
      Article 7 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 2 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
      Article 3 months ago Share
      Details
      Last Updated Nov 14, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Exoplanets Goddard Space Flight Center The Universe View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise.NOAA/NMFS/WCR/CCO The information will help people who live in coastal areas prepare for impacts caused by rising sea levels.
      Earth’s ocean is rising, disrupting livelihoods and infrastructure in coastal communities around the world. Agencies and organizations are working to prepare people as their world changes around them, and NASA information is helping these efforts.
      The agency’s global data is now available in the sea level section of the Earth Information Center. NASA developed the global sea level change website in collaboration with the U.S. Department of Defense, the World Bank, the U.S. Department of State, and the United Nations Development Programme.  
      The site includes information on projected sea level rise through the year 2150 for coastlines around the world, as well as estimates of how much flooding a coastal community or region can expect to see in the next 30 years. The projections come from data collected by NASA and its partners and from computer models of ice sheets and the ocean, as well as the latest sea level assessment from the Intergovernmental Panel on Climate Change, and other sources.
      “NASA innovates for the benefit of humanity. Our cutting-edge instruments and data-driven information tools help communities and organizations respond to natural hazards and extreme weather, and inform critical coastal infrastructure planning decisions,” said Karen St. Germain, director of the Earth science division at NASA Headquarters in Washington.
      Information to Action
      International organizations such as the World Bank will use the data from the global sea level change site for tasks including the creation of Climate Risk Profiles for countries especially vulnerable to sea level rise.
      The Defense Department will continue to incorporate sea level rise data into its plans to anticipate and respond to hazards posed to its facilities by the effects of rising oceans. Similarly, the State Department uses the information for activities ranging from disaster preparedness to long-term adaptation planning to supporting partners around the world in related efforts.
      “We are at a moment of truth in our fight against the climate crisis. The science is unequivocal and must serve as the bedrock upon which decision-making is built. With many communities around the world already facing severe impacts from sea-level rise, this new resource provides a vital tool to help them protect lives and livelihoods. It also illustrates what is at stake between a 1.5-degree-Celsius world and a current-policies trajectory for all coastal communities worldwide,” said Assistant Secretary-General Selwin Hart, special adviser to the United Nations secretary-general on climate action and just transition.
      Rising Faster
      NASA-led data analyses have revealed that between 1970 and 2023, 96% of countries with coastlines have experienced sea level rise. The rate of that global rise has also accelerated, more than doubling from 0.08 inches (0.21 centimeters) per year in 1993 to about 0.18 inches (0.45 centimeters) per year in 2023.
      As the rate of sea level rise increases, millions of people could face the related effects sooner than previously projected, including larger storm surges, more saltwater intrusion into groundwater, and additional high-tide flood days — also known as nuisance floods or sunny day floods.
      “This new platform shows the timing of future floods and the magnitude of rising waters in all coastal countries worldwide, connecting science and physics to impacts on people’s livelihoods and safety,” said Nadya Vinogradova Shiffer, director of the ocean physics program at NASA Headquarters in Washington.
      Data released earlier this year found that Pacific Island nations will experience at least 6 inches (15 centimeters) of sea level rise in the next 30 years. The number of high-tide flood days will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s.
      “The data is clear: Sea levels are rising around the world, and they’re rising faster and faster,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and head of the agency’s sea level change science team. “Having the best information to make decisions about how to plan for rising seas is more crucial than ever.”
      To explore the global sea level change site:
      https://earth.gov/sealevel
      News Media Contacts
       
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-158
      Share
      Details
      Last Updated Nov 13, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Natural Disasters Explore More
      5 min read JPL Workforce Update
      Article 17 hours ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 22 hours ago 4 min read NASA-developed Technology Supports Ocean Wind Speed Measurements from Commercial Satellite
      A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now…
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:06:45 Smile is the Solar wind Magnetosphere Ionosphere Link Explorer, a brand-new space mission currently in the making. It will study space weather and the interaction between the solar wind and Earth’s environment.
      Unique about Smile is that it will take the first X-ray images and videos of the solar wind slamming into Earth’s protective magnetic bubble, and its complementary ultraviolet images will provide the longest-ever continuous look at the northern lights.
      In this first of several short videos, David Agnolon (Smile Project Manager) and Philippe Escoubet (Smile Project Scientist) talk about the why and the how of Smile. You’ll see scenes of the building and testing of the spacecraft’s payload module by Airbus in Madrid, including the installation of one of the European instruments, the Soft X-ray Imager from the University of Leicester.
      Smile is a 50–50 collaboration between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS). ESA provides the payload module of the spacecraft, which carries three of the four science instruments, and the Vega-C rocket which will launch Smile to space. CAS provides the platform module hosting the fourth science instrument, as well as the service and propulsion modules.
      View the full article
    • By NASA
      Name: Dr. Inia Soto Ramos
      Title and Formal Job Classification: Associate Research Scientist
      Organization: Ocean Ecology Laboratory (Code 616) via Morgan State University and GESTAR II cooperative agreement
      Dr. Inia Soto Ramos is an associate research scientist with NASA’s PACE — the Plankton, Aerosol, Cloud, ocean Ecosystem mission — at the agency’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Inia Soto Ramos What do you do and what is most interesting about your role here at Goddard?
      I am currently co-leading the validation efforts for PACE, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission. I am also part of NASA’s SeaBASS (SeaWiFS Bio-optical Archive and Storage System) team, which is responsible for archiving, distributing, and managing field data used for validation and development of satellite ocean color data products. It has been exciting to be a part of a satellite mission, to see it being built, tested and launched. And now, be able to validate the data and in the near future, use the data to do science.
      What is your educational background?
      I graduated with a bachelor’s degree in biology from The University of Puerto Rico, Mayagüez Campus, and I have a master’s and Ph.D. in Biological Oceanography from the University of South Florida.
      How did you get your foot in the door at NASA?
      While I was a student at the University of Puerto Rico, I saw a flyer for a program called PaSCoR (Partnership for Spatial and Computational Research). It was a partnership between universities, NASA and other institutions with the intent to train students in remote sensing and Geographical Information Systems. Although, this program was targeted mainly for engineers, I decided to apply. That took me to the first remote sensing classes I had taken. That’s how I started learning that you can study the ocean from space. I had no idea that could be done. That program planted the curiosity about satellite oceanography and gave me the tools to go into graduate school in that field.
      How did you first gain exposure to oceanography and diving?
      I am from Puerto Rico and grew up all the way in the mountains. There wasn’t much of a connection to the ocean for me, only a few trips to the beach. I remember my dad taking me to a small beach called La Poza del Obispo in Arecibo and he held me while I used a small snorkel underwater. That was the first connection I had with marine life. I started diving sometime when I was about 18 years old, and I remember saying, “This is the most amazing thing ever,” and that’s when I decided I needed to pursue a life in that field.
      What interested you in phytoplankton as a specialty?
      Initially, I was curious about harmful algal blooms in the West Florida Shelf, which I studied when I moved to Florida to do my grad studies. I learned that the blooms can produce neurotoxins, and those can affect humans in different ways. So, if you have asthma, they can make you feel worse. I remember developing asthma that night after going to the beach and having go to the ER. I didn’t see the connection at the time until I learned about these events and how toxins can get in the air. It felt like something important that I could study to help people or do something that’s meaningful. It’s amazing that we can see something so tiny from space and study them.
      How does your identity, being a Latina, show up at NASA?
      This is kind of a dream come true. It is so amazing to be able to fulfill that dream. I came from a small town. There appeared to me no chances to come all the way to NASA. So, having this opportunity is exciting, and bringing it back to my community and saying, “Hey, anyone can actually do it.” One of the advantages is that you speak a different language, so you can make connections with different countries.
      What do you look forward to in the future? What are some of your goals?
       I would love to keep growing in my field. As a mother, sometimes is hard to visualize where I want to be in the future, so I find it best to focus on the present. My priority right now is my family, however in the future I would love to engage in a job in which I can transfer my knowledge and love to the oceans to future generations; and be more involved in the community.
      When you think of your village and growing up in Puerto Rico, what is a memory you have that makes you smile?
      I still remember going to collect coffee with my mom and dad. My dad had a small basket for me that I would fill with only the most beautiful red grains of coffee. I was around 5 years old, and I remember the toys that my mom would take, and they’d settle me under the coffee trees. I still go to Puerto Rico, and I am fascinated when I see the coffee trees; it reminds me of my childhood.
      What advice would you give to other little girls who might not think NASA is a dream they can achieve?
      I was the little girl with the dream of being a scientist at NASA, and then I was a teenager, an adult, and a mother, all with the same dream! It took me several decades and many life stages to get here. Many times, along my path, I thought of giving up. Others, I thought I was completely off track and I would never fulfill my dream. I had limited resources while growing up. There were no fancy swimming or piano classes, but I had amazing teachers and mentors who guided me along the way. So, no matter how young or old you are, you can still fulfill that dream. The key to success is to know where you want to go, surround yourself with people that believe in you, and if you fall, just shake it off and try again!
      By Alexa Figueroa
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Nov 12, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) People of NASA SeaWiFS (Sea-viewing Wide Field-of-view Sensor) View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...