Jump to content

Keeper of the winds shines on


Recommended Posts

Aeolus improves wind measurements

Launched back in 2018, Aeolus has outlived its 36-month in-orbit design life – but going above and beyond, it continues to deliver excellent data. This shows that there’s life yet in the satellite, meaning ESA’s wind mission is now expected to continue shining a light on the wind for another year.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Timothy Lang (ST11) is the Principal Investigator and Aaron Kaulfus (ST11) is a Co-Investigator (Co-I) on a proposal titled “Using CYGNSS with a suite of spaceborne remote sensing datasets to probe tropical maritime cold pool evolution from space”, which was recently selected for funding by NASA. CYGNSS stands for Cyclone Global Navigation Satellite System, and the proposal seeks to combine CYGNSS and other scatterometer measurements of ocean winds using machine learning to detect and track cold pools (i.e., gust front winds) from tropical maritime convection throughout their lifetimes. This work will enable a more process-oriented look at how convectively driven cold pools interact with convection and the local environment. Data from NASA precipitation sensors and NOAA geostationary observations will be included in the analysis as well. The project will last for three years, and it includes University of Alabama in Huntsville (Co-I George Priftis) as a local partner.


      View the full article
    • By NASA
      Star Cluster Westerlund 1.X-ray: NASA/CXC/INAF/M. Guarcello et al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare Westerlund 1 is the biggest and closest “super” star cluster to Earth. New data from NASA’s Chandra X-ray Observatory, in combination with other NASA telescopes, is helping astronomers delve deeper into this galactic factory where stars are vigorously being produced.
      This is the first data to be publicly released from a project called the Extended Westerlund 1 and 2 Open Clusters Survey, or EWOCS, led by astronomers from the Italian National Institute of Astrophysics in Palermo. As part of EWOCS, Chandra observed Westerlund 1 for about 12 days in total.
      Currently, only a handful of stars form in our galaxy each year, but in the past the situation was different. The Milky Way used to produce many more stars, likely hitting its peak of churning out dozens or hundreds of stars per year about 10 billion years ago and then gradually declining ever since. Astronomers think that most of this star formation took place in massive clusters of stars, known as “super star clusters,” like Westerlund 1. These are young clusters of stars that contain more than 10,000 times the mass of the Sun. Westerlund 1 is between about 3 million and 5 million years old.
      This new image shows the new deep Chandra data along with previously released data from NASA’s Hubble Space Telescope. The X-rays detected by Chandra show young stars (mostly represented as white and pink) as well as diffuse heated gas throughout the cluster (colored pink, green, and blue, in order of increasing temperatures for the gas). Many of the stars picked up by Hubble appear as yellow and blue dots.
      Only a few super star clusters still exist in our galaxy, but they offer important clues about this earlier era when most of our galaxy’s stars formed. Westerlund 1 is the biggest of these remaining super star clusters in the Milky Way and contains a mass between 50,000 and 100,000 Suns. It is also the closest super star cluster to Earth at about 13,000 light-years.
      These qualities make Westerlund 1 an excellent target for studying the impact of a super star cluster’s environment on the formation process of stars and planets as well as the evolution of stars over a broad range of masses.
      This new deep Chandra dataset of Westerlund 1 has more than tripled the number of X-ray sources known in the cluster. Before the EWOCS project, Chandra had detected 1,721 sources in Westerlund 1. The EWOCS data found almost 6,000 X-ray sources, including fainter stars with lower masses than the Sun. This gives astronomers a new population to study.
      One revelation is that 1,075 stars detected by Chandra are squeezed into the middle of Westerlund 1 within four light-years of the cluster’s center. For a sense of how crowded this is, four light-years is about the distance between the Sun and the next closest star to Earth.
      The diffuse emission seen in the EWOCS data represents the first detection of a halo of hot gas surrounding the center of Westerlund 1, which astronomers think will be crucial in assessing the cluster’s formation and evolution, and giving a more precise estimate of its mass.
      A paper published in the journal Astronomy and Astrophysics, led by Mario Guarcello from the Italian National Institute of Astrophysics in Palermo, discusses the survey and the first results. Follow-up papers will discuss more about the results, including detailed studies of the brightest X-ray sources. This future work will analyze other EWOCS observations, involving NASA’s James Webb Space Telescope and NICER (Neutron Star Interior Composition Explorer).
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description:
      This is an image of the Westerlund 1 star cluster and the surrounding region, as detected in X-ray and optical light. The black canvas of space is peppered with colored dots of light of various sizes, mostly in shades of red, green, blue, and white.
      At the center of the image is a semi-transparent, red and yellow cloud of gas encircling a grouping of tightly packed gold stars. The shape and distribution of stars in the cluster call to mind effervescent soda bubbles dancing above the ice cubes of a recently poured beverage.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      A team from Iowa accepts the Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Derrol NailPhoto credit: NASA/Derrol Nail Members of the Artemis Generation kicked up some simulated lunar dust as part of NASA’s 2024 Lunabotics Challenge, held at The Astronauts Memorial Foundation’s Center for Space Education at the agency’s Kennedy Space Center Visitor Complex in Florida. When the dust settled, two teams emerged from Artemis Arena as the grand prize winners of this year’s competition. 
      Teams from Iowa State University and the University of Alabama shared the Artemis grand prize award for scoring the most cumulative points during the annual competition. Judges scored competing teams on project management plans, presentations and demonstrations, systems engineering papers, robotic berm building, and science, technology, engineering, and math (STEM) engagement.  
      This is the first time in Lunabotics’ 15-year history that the competition ended in a tie for the top prize, and most likely the last time.  
      “Both teams earned their win, but a tie was never on the table,” said Rich Johanboeke, project manager at NASA’s Kennedy Space Center in Florida. “These students work hard and sacrifice much throughout the year to be a part of this challenge and to come to Kennedy, so our team will look into creating a tie-breaking event for future events.” 
      Alabama’s team lead, Ben Gulledge, is pictured with the team’s winning rover during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail While previous Lunabotics competitions focused on lunar mining, this year’s competition reflected the current needs of NASA’s Artemis missions. Teams designed, built, and operated autonomous robotic rovers capable of building a berm structure from lunar regolith. Among other uses, berms on the Moon could provide protection against blast and material ejected during lunar landings and launches, shade cryogenic propellant tank farms, or shield a nuclear power plant from space radiation. 
      Of the 58 college teams across the country that applied to the challenge, 42 were invited to demonstrate their robotic rovers during the qualifying round held in the Exolith Lab at the University of Central Florida in Orlando. From there, 10 finalist teams made the short trip to Kennedy for the two-day final round, where their robots attempted to construct berms from simulated lunar regolith inside Artemis Arena.  
      “During the competition we had over 150 berm construction runs in the arena,” said Robert Mueller, senior technologist for Advanced Products Development in NASA’s Exploration Research and Technology Programs Directorate, as well as lead judge and co-founder of the original Lunabotics robotic mining challenge. “So, teams went into the arena 150 times and created berms – that’s pretty impressive. And 28 teams, which is 65% of the teams that attended, achieved berm construction points, which is the highest we have ever had. That speaks to the quality of this competition.”  
      Teams competing in this year’s Lunabotics applied the NASA Systems Engineering Process to create their prototype robots and spent upwards of nine months focused on making their designs realities.  
      “We really put a lot of work in this year,” said Vivian Molina Sunda, team and electrical lead for University of Illinois at Chicago. “Our team of 10 put in about 3,400 hours, so it’s really exciting to get to Kennedy Space Center and know we made the top 10.”  
      The University of Illinois team received two awards for its efforts – the Mission Control “Failure is Not an Option” Award for Team Persistence and the Innovation Technology Award for best design based on creative construction, innovative technology, and overall architecture. 
      Lunabotics teams prepare robots to compete inside the Artemis Arena during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail For the hundreds of Artemis Generation members who took part in this year’s competition, Lunabotics was an opportunity to connect to NASA’s mission, work, and people, while also using classroom skills and theories in ways that will benefit them in future STEM careers.  
      “We go into engineering because we want to do stuff, we want to make things,” said Ben Gulledge, team and mechanical lead for the University of Alabama’s Artemis grand prize co-winning team. “This competition gives you the opportunity to take all your classroom theory and put it into practice and learn where your gaps in knowledge are. So, you learn to be a better designer and learn where you can improve in the future.” 
      Coordinated by NASA’s Office of STEM Engagement, the Lunabotics competition is one of NASA’s Artemis Student Challenges, designed to engage and retain students in STEM fields. These challenges are designed to provide students with opportunities to research and design in the areas of science, technology, engineering, and math, while fostering innovative ideas and solutions to challenges likely to be faced during the agency’s Artemis missions.  
      To view the complete list of NASA’s 2024 Lunabotics Challenge winners, or for more information visit:  
      https://www.nasa.gov/learning-resources/lunabotics-challenge/
      Winners List 
       
      Artemis Grand Prize 
      Iowa State University, The University of Alabama 
      Robotic Construction Award  
      First Place – Iowa State University  
      Second Place – The University of Alabama  
      Third Place – University of Utah  
      Systems Engineering Paper Award 
      First Place – College of DuPage 
      Second Place – The University of Alabama 
      Third Place – Purdue University-Main Campus 
      Leaps and Bounds Award 
      New York University 
      Nova Award for Stellar Systems Engineering by a First Year Team 
      Ohio State University 
      STEM Engagement Award 
      First Place – University of North Florida 
      Second Place – Auburn University 
      Third Place – Iowa State University 
      Honorable Mention – Harrisburg University of Science and Technology 
      Presentation and Demonstration 
      First Place – University of North Carolina at Charlotte 
      Second Place – Purdue University-Main Campus 
      Third Place – University of Utah 
      First Steps Award – Best Presentation by a First Year Team  
      Harrisburg University of Science and Technology 
      Innovation Technology Award 
      University of Illinois at Chicago  
      The Mission Control “Failure is Not an Option” Award for Team Persistence 
      University of Illinois at Chicago 
      View the full article
    • By European Space Agency
      ESA won the Best Merchandise award at Space Creator Day 2023, a significant recognition by a community of space enthusiasts. The award highlights ESA’s efforts to promote its activities through innovative and attractive designs that appeal to the public.
      View the full article
    • By NASA
      5 min read
      NASA’s Juno Finds Jupiter’s Winds Penetrate in Cylindrical Layers
      NASA’s Juno captured this view of Jupiter during the mission’s 54th close flyby of the giant planet on Sept. 7. The image was made with raw data from the JunoCam instrument that was processed to enhance details in cloud features and colors. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Tanya Oleksuik CC BY NC SA 3.0 The finding offers deeper insights into the long-debated internal structure of the gas giant.
      Gravity data collected by NASA’s Juno mission indicates Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner, parallel to its spin axis. A paper on the findings was recently published in the journal Nature Astronomy.
      The violent nature of Jupiter’s roiling atmosphere has long been a source of fascination for astronomers and planetary scientists, and Juno has had a ringside seat to the goings-on since it entered orbit in 2016. During each of the spacecraft’s 55  to date, a suite of science instruments has peered below Jupiter’s turbulent cloud deck to uncover how the gas giant works from the inside out.
      One way the Juno mission learns about the planet’s interior is via radio science. Using NASA’s Deep Space Network antennas, scientists track the spacecraft’s radio signal as Juno flies past Jupiter at speeds near 130,000 mph (209,000 kph), measuring tiny changes in its velocity – as small as 0.01 millimeter per second. Those changes are caused by variations in the planet’s gravity field, and by measuring them, the mission can essentially see into Jupiter’s atmosphere.
      Such measurements have led to numerous discoveries, including the existence of a dilute core deep within Jupiter and the depth of the planet’s zones and belts, which extend from the cloud tops down approximately 1,860 miles (3,000 kilometers).
      Doing the Math
      To determine the location and cylindrical nature of the winds, the study’s authors applied a mathematical technique that models gravitational variations and surface elevations of rocky planets like Earth. At Jupiter, the technique can be used to accurately map winds at depth. Using the high-precision Juno data, the authors were able to generate a four-fold increase in the resolution over previous models created with data from NASA’s trailblazing Jovian explorers Voyager and Galileo.
      This illustration depicts findings that Jupiter’s atmospheric winds penetrate the planet in a cylindrical manner and parallel to its spin axis. The most dominant jet recorded by NASA’s Juno is shown in the cutout: The jet is at 21 degrees north latitude at cloud level, but 1,800 miles (3,000 kilometers) below that, it’s at 13 degrees north latitude.NASA/JPL-Caltech/SSI/SWRI/MSSS/ASI/ INAF/JIRAM/Björn Jónsson CC BY 3.0 “We applied a constraining technique developed for sparse data sets on terrestrial planets to process the Juno data,” said Ryan Park, a Juno scientist and lead of the mission’s gravity science investigation from NASA’s Jet Propulsion Laboratory in Southern California. “This is the first time such a technique has been applied to an outer planet.”
      The measurements of the gravity field matched a two-decade-old model that determined Jupiter’s powerful east-west zonal flows extend from the cloud-level white and red zones and belts inward. But the measurements also revealed that rather than extending in every direction like a radiating sphere, the zonal flows go inward, cylindrically, and are oriented along the direction of Jupiter’s rotation axis. How Jupiter’s deep atmospheric winds are structured has been in debated since the 1970s, and the Juno mission has now settled the debate.
      Follow the Juno spacecraft with Eyes on the Solar System “All 40 gravity coefficients measured by Juno matched our previous calculations of what we expect the gravity field to be if the winds penetrate inward on cylinders,” said Yohai Kaspi of the Weizmann Institute of Science in Israel, the study’s lead author and a Juno co-investigator. “When we realized all 40 numbers exactly match our calculations, it felt like winning the lottery.”
      Along with bettering the current understanding of Jupiter’s internal structure and origin, the new gravity model application could be used to gain more insight into other planetary atmospheres.
      Juno is currently in an extended mission. Along with flybys of Jupiter, the solar-powered spacecraft has completed a series of flybys of the planet’s icy moons Ganymede and Europa and is in the midst of several close flybys of Io. The Dec. 30 flyby of Io will be the closest to date, coming within about 930 miles (1,500 kilometers) of its volcano-festooned surface.
      “As Juno’s journey progresses, we’re achieving scientific outcomes that truly define a new Jupiter and that likely are relevant for all giant planets, both within our solar system and beyond,” said Scott Bolton, the principal investigator of the Juno mission at the Southwest Research Institute in San Antonio. “The resolution of the newly determined gravity field is remarkably similar to the accuracy we estimated 20 years ago. It is great to see such agreement between our prediction and our results.”
      More About the Mission
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Lockheed Martin Space in Denver built and operates the spacecraft.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      301-286-6284 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Dana Bernstein
      Weizmann Institute of Science
      972-8-934-3856
      dana.bernstein@weizmann.ac.il
      2023-163
      Share
      Details
      Last Updated Nov 09, 2023 Related Terms
      Europa Jet Propulsion Laboratory Juno Jupiter Jupiter Moons Planets The Solar System Explore More
      4 min read NASA Analysis Finds Strong El Niño Could Bring Extra Floods This Winter
      Article 1 day ago 2 min read Calling all Eclipse Enthusiasts: Become a NASA Partner Eclipse Ambassador!
      By Vivian White, Astronomical Society of the Pacific Are you an astronomy enthusiast or undergraduate…
      Article 2 days ago 5 min read NASA’s Lucy Surprises Again, Observes 1st-ever Contact Binary Orbiting Asteroid
      NASA’s Lucy Spacecraft took images of asteroid Dinkinesh, discovering that the asteroid has the first-ever…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...