Members Can Post Anonymously On This Site
Military Whistle Blower reveals new top secret information on retrieval of Alien and Man Made UFOS!
-
Similar Topics
-
By Space Force
Defense Secretary Pete Hegseth discussed his priorities of strengthening the military by cutting fiscal fraud, waste and abuse at DOD while also finding ways to refocus the department's budget.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
Explore More NASA Stennis Images View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / Getty Images NASA has selected two new university student teams to participate in real-world aviation research challenges meant to transform the skies above our communities.
The research awards were made through NASA’s University Student Research Challenge (USRC), which provides students with opportunities to contribute to NASA’s flight research goals.
This round is notable for including USRC’s first-ever award to a community college: Cerritos Community College.
We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics.
steven holz
NASA Project Manager
“We’re trying to tap into the community college talent pool to bring new students to the table for aeronautics,” said Steven Holz, who manages the USRC award process. “Innovation comes from everywhere, and people with different viewpoints, educational backgrounds, and experiences like those in our community colleges are also interested in aeronautics and looking to make a difference.”
Real World Research Awards
Through USRC, students interact with real-world aspects of the research ecosystem both in and out of the laboratory. They will manage their own research projects, utilize state-of-the-art technology, and work alongside accomplished aeronautical researchers. Students are expected to make unique contributions to NASA’s research priorities.
USRC provides more than just experience in technical research.
Each team of students selected receives a USRC grant from NASA – and is tasked with the additional challenge of raising funds from the public through student-led crowdfunding. The process helps students develop skills in entrepreneurship and public communication.
The new university teams and research topics are:
Cerritos Community College
“Project F.I.R.E. (Fire Intervention Retardant Expeller)” will explore how to mitigate wildfires by using environmentally friendly fire-retardant pellets dropped from drones. Cerritos Community College’s team includes lead Angel Ortega Barrera as well as Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, and Juan Villa, with faculty mentor Janet McLarty-Schroeder. This team also successfully participated with the same research topic in in NASA’s Gateway to Blue Skies competition, which aims to expand engagement between the NASA’s University Innovation project and universities, industry, and government partners.
Colorado School of Mines
The project “Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan” will work on a scaled-down prototype for an electric turbofan for supersonic aircraft. The Colorado School of Mines team includes lead Mahzad Gholamian as well as Garret Reader, Mykola Mazur, and Mirali Seyedrezaei, with faculty mentor Omid Beik.
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
Article 1 week ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 1 week ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Feb 18, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
-
By NASA
Modeling properties of thunderstorm discharges
Researchers report detailed physical properties of different types of corona discharges, including single- and multi-pulse blue discharges linked to powerful but short-lived electrical bursts near the tops of clouds. These details provide a reference for further investigation into the physical mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
An ESA (European Space Agency) instrument used to study thunderstorms, Atmosphere-Space Interactions Monitor (ASIM) provides insights into their role in Earth’s atmosphere and climate, including mechanisms behind the creation of lightning. Understanding how thunderstorms and lightning disturb the upper atmosphere could improve atmospheric models along with climate and weather predictions. These high-altitude discharges also affect aircraft and spacecraft safety.
An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Space Evaluating effects of climate change on oceans
Researchers conclude that the space station’s ECOSTRESS instrument yields highly accurate sea surface temperature data. Given the instrument’s global coverage and high spatial resolution, these data have potential use in studies of biological and physical oceanography to evaluate regional and local effects of climate change.
ECOSTRESS resolves oceanographic features not detectable in imagery from NOAA’s Visible Infrared Imaging Radiometer Suite satellite, and has open-ocean coverage, unlike Landsat. Satellites are a fundamental tool to measure sea surface temperatures, which are rising across all oceans due to atmospheric warming induced by climate change.
The ECOSTRESS instrument, the white box in the center, is visible on the outside of the station.NASA Describing a gamma ray burst
Researchers report detailed observations and analysis of emissions from an exceptionally bright gamma ray burst (GRB), 210619B, detected by the station’s ASIM and other satellite and ground-based instruments. These observations could be useful in determining various properties of GRBs and how they change during different phases.
Believed to be generated by the collapse of massive stars, GRBs are the brightest, most explosive transient electromagnetic events in the universe. ASIM can observe thunderstorm discharges difficult to observe from the ground. It has a mode where a detected event triggers observation and onboard storage of data.
A view of ASIM mounted on the outside of the space station. NASAView the full article
-
By NASA
Measuring water loss from space
This study showed that the International Space Station’s ECOSTRESS instrument estimates of evapotranspiration (transfer of water to the atmosphere from Earth’s surface and plants) are comparable to ground-based reference values. This finding suggests space measurements could provide guidance for improved water management on large scales.
Worsening droughts due to climate change require better water management. Evapotranspiration is a critical part of the hydrologic cycle, but data are lacking on local water conditions and demands. California’s Eastern Municipal Water District uses the ground-based California Irrigation Management Information System to track evapotranspiration, but it has limited spatial coverage and consistency. Space-based estimates could be better and more consistent.
The ECOSTRESS instrument, the white box in the center, is visible on the outside of the station.NASA
Four-legged robotic retrievers
Space station crew members successfully located and retrieved an object in a simulated Mars environment using a remotely controlled four-legged robot, Bert. Legged robots could provide the ability to explore and survey different extraterrestrial surfaces on future missions.
On uneven lunar and planetary surfaces, robots with legs could explore areas inaccessible to wheeled rovers. Surface Avatar, an investigation from ESA (European Space Agency), evaluated remote control of multiple robots in space, providing information on how human operators respond to physical feedback (such as feeling a bump when a robot arm makes contact) and identifying challenges for orbit-to-ground remote operation of robots. The German Aerospace Center is developing Bert.
ESA astronaut Samantha Cristoforetti practices maneuvers for the Surface Avatar investigation.NASA
Technology supports atmospheric studies
Researchers found that the Compact Thermal Imager (CTI) on the space station produced scientifically useful imagery of atmospheric phenomena, including gravity waves, clouds, and volcanic plumes. This technology could change current practices and instrument design for remote sensing of Earth from space.
The CTI is mounted on hardware for Robotic Refueling Mission 3, which tested technology for the robotic transfer and storage of cryogenic fluids in microgravity. The station’s orbit provides near-global coverage and CTI has reduced size, energy use, and cost. Its images can measure fires, ice sheets, glaciers, and snow surface temperatures on the ground and the transfer of water from soil and plants into the atmosphere.
NASA astronaut Anne McClain and CSA astronaut David Saint-Jacques installing the RRM3 hardware.NASAView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.