Jump to content

STScI Astronomers Nancy Levenson and David Soderblom Elected AAAS Fellows


HubbleSite

Recommended Posts

low_image-keystone-1646.png

Nancy A. Levenson and David R. Soderblom of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, have been named Fellows of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed upon AAAS members by their peers.

The AAAS cited Dr. Levenson for her exemplary service and distinguished contributions to the field of astrophysics as Deputy Director of the international Gemini Observatory in La Serena, Chile. She is currently STScI's Deputy Director. Soderblom is cited by the AAAS for his distinguished work in the field of astrophysics, with contributions to understanding low-mass stars and exoplanet searches. An Astronomer at STScI since 1984, Soderblom is also a Principal Research Scientist at Johns Hopkins University in Baltimore. In honor of their efforts, Levenson, Soderblom, and the 389 other newly elected Fellows will receive an official certificate and a gold and blue (representing science and engineering, respectively) rosette pin on February 18, 2017, at the AAAS Fellows Forum during the 2017 AAAS annual meeting in Boston, Massachusetts.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth as viewed from the International Space Station.Credit: NASA The NASA-funded Translational Research Institute for Space Health (TRISH) announced its selections for the institute’s 2024 postdoctoral fellowship, a space health program intended to launch the careers of a new generation of researchers tackling various challenges involved with human space exploration.
      The program supports early-career scientists pursuing research with the potential to reduce the health risks associated with spaceflight. Selected fellows will participate in TRISH’s Academy of Bioastronautics, a mentorship community for space health professionals, and receive a two-year salary stipend. Fellows were selected based on the strengths of the various projects they proposed. Projects are expected to begin in September.
      “Our TRISH program has always prioritized providing the next generation with the tools to further human health in space,” said Dr. Rihana Bokhari, acting TRISH chief scientific officer and assistant professor at Baylor College of Medicine in Houston. “As space becomes more accessible to more people, investing in these early-career scientists is necessary to develop solutions to mitigate the health risks that life in space may pose. We are eager to have this group join our postdoctoral fellowship program and enhance their research for spaceflight.”
      The following fellows were selected:
      Carolyn Chlebek, Ph.D.
      MaineHealth
      Mentor: Clifford Rosen, M.D.
      Project: Bone Metabolism is Altered by Skeletal Unloading and Nutrient Limitation During Long-duration Spaceflight
      Katharyn Flickinger, Ph.D.
      University of Pittsburgh
      Mentor: Clifton Callaway, M.D., Ph.D.
      Project: Metabolic Measurement, Manipulation, and Countermeasure Strategies
      Patrick Opdensteinen, M.Sc., Ph.D.
      University of California, San Diego
      Mentor: Nicole Steinmetz, Ph.D. Project: Streamlined Molecular Farming of Virus-Like Particle (VLP) Therapeutics in Space
      The institute is supported by NASA’s Human Research Program to solve the challenges of human deep space exploration. Led by Baylor College of Medicine’s Center for Space Medicine, the consortium leverages partnerships with Caltech in Pasadena, California and Massachusetts Institute of Technology in Cambridge.
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and missions to the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.
      -end-
      Kelly Humphries / Laura Sorto
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov / laura.g.sorto@nasa.gov
      View the full article
    • By European Space Agency
      Using the NASA/ESA/CSA James Webb Space Telescope, scientists observed the region above Jupiter’s iconic Great Red Spot to discover a variety of previously unseen features. The region, previously believed to be unremarkable in nature, hosts a variety of intricate structures and activity.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.NASA/Goddard Space Flight Center Around the world this summer, professional and amateur astronomers alike will be fixed on one small constellation deep in the night sky. But it’s not the seven stars of Corona Borealis, the “Northern Crown,” that have sparked such fascination.
      It’s a dark spot among them where an impending nova event – so bright it will be visible on Earth with the naked eye – is poised to occur.
      “It’s a once-in-a-lifetime event that will create a lot of new astronomers out there, giving young people a cosmic event they can observe for themselves, ask their own questions, and collect their own data,” said Dr. Rebekah Hounsell, an assistant research scientist specializing in nova events at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’ll fuel the next generation of scientists.”
      T Coronae Borealis, dubbed the “Blaze Star” and known to astronomers simply as “T CrB,” is a binary system nestled in the Northern Crown some 3,000 light-years from Earth. The system is comprised of a white dwarf – an Earth-sized remnant of a dead star with a mass comparable to that of our Sun – and an ancient red giant slowly being stripped of hydrogen by the relentless gravitational pull of its hungry neighbor.
      The hydrogen from the red giant accretes on the surface of the white dwarf, causing a buildup of pressure and heat. Eventually, it triggers a thermonuclear explosion big enough to blast away that accreted material. For T CrB, that event appears to reoccur, on average, every 80 years.
      Don’t confuse a nova with a supernova, a final, titanic explosion that destroys some dying stars, Hounsell said. In a nova event, the dwarf star remains intact, sending the accumulated material hurtling into space in a blinding flash. The cycle typically repeats itself over time, a process which can carry on for tens or hundreds of thousands of years.
      “There are a few recurrent novae with very short cycles, but typically, we don’t often see a repeated outburst in a human lifetime, and rarely one so relatively close to our own system,” Hounsell said. “It’s incredibly exciting to have this front-row seat.”
      Finding T Coronae Borealis
      A conceptual image of how to find Hercules and the “Northern Crown” in the night sky, created using planetarium software. Look up after sunset during summer months to find Hercules, then scan between Vega and Arcturus, where the distinct pattern of Corona Borealis may be identified. NASA The first recorded sighting of the T CrB nova was more than 800 years ago, in autumn 1217, when a man named Burchard, abbot of Ursberg, Germany, noted his observance of “a faint star that for a time shone with great light.”
      The T CrB nova was last seen from Earth in 1946. Its behavior over the past decade appears strikingly similar to observed behavior in a similar timeframe leading up to the 1946 eruption. If the pattern continues, some researchers say, the nova event could occur by September 2024.
      What should stargazers look for? The Northern Crown is a horseshoe-shaped curve of stars west of the Hercules constellation, ideally spotted on clear nights. It can be identified by locating the two brightest stars in the Northern Hemisphere – Arcturus and Vega – and tracking a straight line from one to the other, which will lead skywatchers to Hercules and the Corona Borealis.
      The outburst will be brief. Once it erupts, it will be visible to the naked eye for a little less than a week – but Hounsell is confident it will be quite a sight to see.
      A coordinated scientific approach
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Watch V407 Cyg go nova! In this animation, gamma rays (magenta) arise when accelerated particles in the explosion's shock wave crash into the red giant's stellar wind.NASA/Conceptual Image Lab/Goddard Space Flight Center Dr. Elizabeth Hays, chief of the Astroparticle Physics Laboratory at NASA Goddard, agreed. She said part of the fun in preparing to observe the event is seeing the enthusiasm among amateur stargazers, whose passion for extreme space phenomena has helped sustain a long and mutually rewarding partnership with NASA.
      “Citizen scientists and space enthusiasts are always looking for those strong, bright signals that identify nova events and other phenomena,” Hays said. “Using social media and email, they’ll send out instant alerts, and the flag goes up. We’re counting on that global community interaction again with T CrB.”
      Hays is the project scientist for NASA’s Fermi Gamma-ray Space Telescope, which has made gamma-ray observations from low Earth orbit since 2008. Fermi is poised to observe T CrB when the nova eruption is detected, along with other space-based missions including NASA’s James Webb Space Telescope, Neil Gehrels Swift Observatory, IXPE (Imaging X-ray Polarimetry Explorer), NuSTAR (Nuclear Spectroscopic Telescope Array), NICER (Neutron star Interior Composition Explorer), and the European Space Agency’s INTEGRAL (Extreme Universe Surveyor). Numerous ground-based radio telescopes and optical imagers, including the National Radio Astronomy Observatory’s Very Large Array in Mexico, also will take part. Collectively, the various telescopes and instruments will capture data across the visible and non-visible light spectrum.
      “We’ll observe the nova event at its peak and through its decline, as the visible energy of the outburst fades,” Hounsell said. “But it’s equally critical to obtain data during the early rise to eruption – so the data collected by those avid citizen scientists on the lookout now for the nova will contribute dramatically to our findings.”
      For astrophysics researchers, that promises a rare opportunity to shed new light on the structure and dynamics of recurring stellar explosions like this one.
      “Typically, nova events are so faint and far away that it’s hard to clearly identify where the erupting energy is concentrated,” Hays said. “This one will be really close, with a lot of eyes on it, studying the various wavelengths and hopefully giving us data to start unlocking the structure and specific processes involved. We can’t wait to get the full picture of what’s going on.”
      Some of those eyes will be very new. Gamma-ray imagers didn’t exist the last time T CrB erupted in 1946, and IXPE’s polarization capability – which identifies the organization and alignment of electromagnetic waves to determine the structure and internal processes of high-energy phenomena – is also a brand-new tool in X-ray astronomy. Combining their data could offer unprecedented insight into the lifecycles of binary systems and the waning but powerful stellar processes that fuel them.
      Is there a chance September will come and go without the anticipated nova outburst from T CrB? Experts agree there are no guarantees – but hope abides.
      “Recurrent novae are unpredictable and contrarian,” said Dr. Koji Mukai, a fellow astrophysics researcher at NASA Goddard. “When you think there can’t possibly be a reason they follow a certain set pattern, they do – and as soon as you start to rely on them repeating the same pattern, they deviate from it completely. We’ll see how T CrB behaves.”
      Learn more about NASA astrophysics at:
      https://science.nasa.gov/astrophysics
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Jun 06, 2024 Related Terms
      Marshall Space Flight Center General Goddard Space Flight Center Explore More
      5 min read NASA Marshall Engineer Receives AIAA Honors Award
      Article 2 hours ago 5 min read Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA
      Article 19 hours ago 26 min read The Marshall Star for June 5, 2024
      Article 19 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Russell L. Schweickart Astronaut David R. Scott, command module pilot for the Apollo 9 Earth-orbital mission, stands in the command module’s open hatch during his stand-up spacewalk on March 6, 1969. Astronaut Russell L. Schweickart, lunar module pilot, took this photograph of Scott while also performing a spacewalk. He was positioned on the porch of the lunar module (LM), while astronaut James A. McDivitt, was inside the LM.
      Apollo 9 was the first crewed flight of the command/service module along with the lunar module. The mission’s three-person crew tested several aspects critical to landing on the Moon including the lunar module’s engines, backpack life support systems, navigation systems, and docking maneuvers. Apollo 9 set the stage for the next step — Apollo 10 — a test mission that occurred about 70 miles above the Moon’s surface.
      See more photos from Apollo 9.
      Image Credit: NASA/Russell L. Schweickart
      View the full article
    • By NASA
      2 min read
      UNITE All-Nighter Delights Amateur Astronomers
      Fadi Saibi and his daughter Sophie, age 14, pose for a photograph with their Unistellar telescope in their backyard in Sunnyvale, Calif., on Thursday, Jan. 11, 2024. Credit: Bay Area News Group/Nhat V. Meye Maybe you read about them in the papers–amateur astronomers in Japan, Russia, France, Finland, and the United States have been pulling all-nighters to spot extraordinary exoplanets, planets orbiting stars other than the Sun. 
      NASA’s UNITE project holds these planetary stakeouts several times every month, and you can join in!
      This October, the UNITE team undertook a 20-hour marathon as part of tracking a Saturn-sized planet called TOI-4600 c. They watched and waited, trying to see the planet’s star dim by about 1% as the planet passed in front of it. 
      Success would tell us that the planet takes a little more than one Earth year to orbit its star. It would place this planet on a short list of gas-giant planets known outside our own solar system that have sizes and temperatures similar to those of Saturn and Jupiter. Such planets are key laboratories for studying how our solar system was formed, so each new example is precious.
      In mid-January, the UNITE team coordinated observations across Europe to catch the third-ever star-crossing event for a different planet. (The third one seen by humans, that is!) Once the team does catch it, they’ll know if it takes three Earth years to orbits its star, which would make it fairly cold planet, or something closer to 100 Earth days, telling us that the planet is relatively warm.
      The final results of these observations remain closely-guarded secrets, but they will soon be released in an astronomy journal articles. 
      The Unistellar Network Investigating TESS Exoplanets (UNITE) project is a global team of volunteer telescope observers tracking down rare worlds in distant solar systems. Visit science.unistellaroptics.com and you can be part of the next UNITE discovery!
      Share








      Details
      Last Updated Feb 02, 2024 Related Terms
      Astrophysics Citizen Science Uncategorized View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...