Jump to content

Celebrating Hubble’s 32nd birthday with a galaxy grouping


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark
      The galaxy cluster MACS-J0417.5-1154. Full image below. Credits:
      NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). It’s 7 billion years ago, and the universe’s heyday of star formation is beginning to slow. What might our Milky Way galaxy have looked like at that time? Astronomers using NASA’s James Webb Space Telescope have found clues in the form of a cosmic question mark, the result of a rare alignment across light-years of space.
      “We know of only three or four occurrences of similar gravitational lens configurations in the observable universe, which makes this find exciting, as it demonstrates the power of Webb and suggests maybe now we will find more of these,” said astronomer Guillaume Desprez of Saint Mary’s University in Halifax, Nova Scotia, a member of the team presenting the Webb results.
      Image A: Lensed Question Mark (NIRCam)
      The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. Active star formation, and the face-on galaxy’s remarkably intact spiral shape, indicate that these galaxies’ interaction is just beginning. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). While this region has been observed previously with NASA’s Hubble Space Telescope, the dusty red galaxy that forms the intriguing question-mark shape only came into view with Webb. This is a result of the wavelengths of light that Hubble detects getting trapped in cosmic dust, while longer wavelengths of infrared light are able to pass through and be detected by Webb’s instruments.
      Astronomers used both telescopes to observe the galaxy cluster MACS-J0417.5-1154, which acts like a magnifying glass because the cluster is so massive it warps the fabric of space-time. This allows astronomers to see enhanced detail in much more distant galaxies behind the cluster. However, the same gravitational effects that magnify the galaxies also cause distortion, resulting in galaxies that appear smeared across the sky in arcs and even appear multiple times. These optical illusions in space are called gravitational lensing.
      The red galaxy revealed by Webb, along with a spiral galaxy it is interacting with that was previously detected by Hubble, are being magnified and distorted in an unusual way, which requires a particular, rare alignment between the distant galaxies, the lens, and the observer — something astronomers call a hyperbolic umbilic gravitational lens. This accounts for the five images of the galaxy pair seen in Webb’s image, four of which trace the top of the question mark. The dot of the question mark is an unrelated galaxy that happens to be in the right place and space-time, from our perspective.
      Image B: Hubble and Webb Side by Side
      Image Before/After In addition to producing a case study of the Webb NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument’s ability to detect star formation locations within a galaxy billions of light-years away, the research team also couldn’t resist highlighting the question mark shape. “This is just cool looking. Amazing images like this are why I got into astronomy when I was young,” said astronomer Marcin Sawicki of Saint Mary’s University, one of the lead researchers on the team. 
      “Knowing when, where, and how star formation occurs within galaxies is crucial to understanding how galaxies have evolved over the history of the universe,” said astronomer Vicente Estrada-Carpenter of Saint Mary’s University, who used both Hubble’s ultraviolet and Webb’s infrared data to show where new stars are forming in the galaxies. The results show that star formation is widespread in both. The spectral data also confirmed that the newfound dusty galaxy is located at the same distance as the face-on spiral galaxy, and they are likely beginning to interact.
      “Both galaxies in the Question Mark Pair show active star formation in several compact regions, likely a result of gas from the two galaxies colliding,” said Estrada-Carpenter. “However, neither galaxy’s shape appears too disrupted, so we are probably seeing the beginning of their interaction with each other.”
      “These galaxies, seen billions of years ago when star formation was at its peak, are similar to the mass that the Milky Way galaxy would have been at that time. Webb is allowing us to study what the teenage years of our own galaxy would have been like,” said Sawicki.
      The Webb images and spectra in this research came from the Canadian NIRISS Unbiased Cluster Survey (CANUCS). The research paper is published in the Monthly Notices of the Royal Astronomical Society.
      Image C: Wide Field – Lensed Question Mark (NIRCam)
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Leah Ramsey – lramsey@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: Gravity – Nature’s Magnifying Glass
      VIDEO: What happens when galaxies collide?

      ARTICLE: More about Galaxy Evolution

      VIDEO: Learn more about Galactic Collisions
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      The Pegasus Dwarf spheroidal galaxy, also known as Andromeda VI, is one of at least 13 dwarf galaxies that orbit the Andromeda galaxy.NASA, ESA, and D. Weisz (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America) A glittering collection of stars shines against a background of much more distant galaxies in this view from NASA’s Hubble Space Telescope of the Pegasus Dwarf spheroidal galaxy, also known as Andromeda VI. 
      The Andromeda galaxy, also known as Messier 31, is the Milky Way’s closest grand spiral galaxy neighbor, and is host to at least 13 dwarf galaxies that orbit around it. The Pegasus Dwarf spheroidal galaxy is one of these mini-galaxies. Dwarf spheroidal galaxies are the dimmest and least massive galaxies known. They tend to have elliptical shapes and relatively smooth distributions of stars. Dwarf spheroidal galaxies are usually devoid of gas and dominated by old and intermediate-age stars, although some have experienced small amounts of recent star formation. 
      The Pegasus Dwarf Spheroidal galaxy was discovered in 1998 and has been characterized as having a small amount of heavy elements and little of the gas needed  to form another generation of stars ― though more than many of the dwarf spheroidal galaxies within our Local Group of galaxies. Researchers suspect that Andromeda’s gravitational field may have stripped the star-forming gases from it, leaving a dearth of material to build more than a few generations of stars. In comparison, some of the dwarf spheroidal companion galaxies of the Milky Way found at comparable distances do contain some intermediate-age stars, but this could be because Andromeda is so massive and extended that its gravitational effects extend farther. 
      The jury is still out on how dwarf spheroidal galaxies form. Theories include collisions between galaxies that break off small fragments, the gravitational influence of larger galaxies on small disk-shaped dwarf galaxies, and processes associated with the birth of small systems among collections of dark matter. Andromeda and the Milky Way are the only galaxies close enough for astronomers to view these dim satellite galaxies, so clues to their formation will have to come from close neighbors like this one.
      Hubble studied this galaxy as part of an examination of the entire Andromeda system of satellites in order to investigate such critical matters as dark matter, reionization, and the growth of galactic ecosystems across cosmic time.

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      View the full article
    • By NASA
      2 min read
      Hubble Pinpoints a Dim, Starry Mini-galaxy
      NASA, ESA, and D. Weisz (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America) A glittering collection of stars shines against a background of much more distant galaxies in this view from NASA’s Hubble Space Telescope of the Pegasus Dwarf spheroidal galaxy, also known as Andromeda VI. 
      The Andromeda galaxy, also known as Messier 31, is the Milky Way’s closest grand spiral galaxy neighbor, and is host to at least 13 dwarf galaxies that orbit around it. The Pegasus Dwarf spheroidal galaxy is one of these mini-galaxies. Dwarf spheroidal galaxies are the dimmest and least massive galaxies known. They tend to have elliptical shapes and relatively smooth distributions of stars. Dwarf spheroidal galaxies are usually devoid of gas and dominated by old and intermediate-age stars, although some have experienced small amounts of recent star formation. 
      The Pegasus Dwarf Spheroidal galaxy was discovered in 1998 and has been characterized as having a small amount of heavy elements and little of the gas needed  to form another generation of stars ― though more than many of the dwarf spheroidal galaxies within our Local Group of galaxies. Researchers suspect that Andromeda’s gravitational field may have stripped the star-forming gases from it, leaving a dearth of material to build more than a few generations of stars. In comparison, some of the dwarf spheroidal companion galaxies of the Milky Way found at comparable distances do contain some intermediate-age stars, but this could be because Andromeda is so massive and extended that its gravitational effects extend farther. 
      The jury is still out on how dwarf spheroidal galaxies form. Theories include collisions between galaxies that break off small fragments, the gravitational influence of larger galaxies on small disk-shaped dwarf galaxies, and processes associated with the birth of small systems among collections of dark matter. Andromeda and the Milky Way are the only galaxies close enough for astronomers to view these dim satellite galaxies, so clues to their formation will have to come from close neighbors like this one.
      Hubble studied this galaxy as part of an examination of the entire Andromeda system of satellites in order to investigate such critical matters as dark matter, reionization, and the growth of galactic ecosystems across cosmic time.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 27, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      2 min read
      Hubble Finds Structure in an Unstructured Galaxy
      NASA, ESA, A. del Pino Molina (CEFCA), K. Gilbert and R. van der Marel (STScI), A. Cole (University of Tasmania); Image Processing: Gladys Kober (NASA/Catholic University of America) This NASA Hubble Space Telescope image features the nearby dwarf irregular galaxy Leo A, located some 2.6 million light-years away. The relatively open distribution of stars in this diminutive galaxy allows light from distant background galaxies to shine through.
      Astronomers study dwarf galaxies like Leo A because they are numerous and may offer clues to how galaxies grow and evolve. Dwarf galaxies are small and dim making the most distant members of this galaxy type difficult to study. As a result, astronomers point their telescopes toward those that are relatively near to our own Milky Way galaxy, like Leo A. 
      Leo A is one of the most isolated galaxies in our Local Group of galaxies. Its form appears as a roughly spherical, sparsely populated mass of stars with no obvious structural features like spiral arms. 
      The data that created this image come from four Hubble observing programs. Three of these looked at star formation histories of relatively nearby dwarf galaxies. The fourth sought to better determine the mass of our Local Group by looking at the motions of dwarf galaxies just outside of the Local Group. 
      The Hubble observations that looked at star formation found distinct structural differences in the age and distribution of stars in the galaxy. Most of the younger stars are located in the middle of the galaxy, while the number of older stars increases as you move outward from the center. Hubble observations also suggest that the galaxy’s halo of stars is about one-third larger than previous estimates. This distribution suggests that star formation in Leo A occurred from the outside-in, or that older stars efficiently migrated to the outskirts of Leo A in the early stages of its evolution.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 22, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      9 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Research pilot Greg Slover “spreads his wings” at NASA’s Langley Research Center. On August 19, tag your posts with #SpreadYourWings or #NationalAviationDay.NASA / David C. Bowman It was in 1939 that President Franklin D. Roosevelt issued the first presidential proclamation designating Aug. 19 – Orville Wright’s birthday – as a day in which citizens are encouraged to participate in activities that promote interest in aviation. So how will you be a good citizen and observe the day as indicated by the President? Here are ten suggestions — plus one bonus idea at the end that is a “must do!” — for you and your family and friends to consider:
      1. “Spread Your Wings.”
      Have someone take a picture of you and your friends or loved ones stretching out your arms like the wings of an airplane. (For extra brownie points use your hands to make winglets – one of NASA’s many contributions to aviation.) Tell us how you’re celebrating flight on August 19. Post your photo to X, Facebook, Instagram, or any other social media. Be sure and tag it with #NationalAviationDay so we see it!
      2. Remember that NASA is with you when you fly.
      Are you traveling by air today or anytime soon? After you settle into your assigned seat buckle up, make sure your seatback and folding tray are in their full upright positions, and then take a moment and think about NASA. Why? Well it might not be immediately visible to you, but every U.S. aircraft and air traffic control tower in operation today uses some kind of NASA-developed technology.
      Before you take off and the pilots shut the door, glance into the cockpit. See all the electronic displays? They make up what’s called the “glass cockpit.” NASA did early testing on using the displays to replace heavier and outdated dials and gauges.
      Now, look out your window. See the vertical extension on the tip of your airplane’s wing? That’s a “winglet.” It was originally tested and developed by NASA as a way to reduce drag. In use for many, many years now, winglets have saved billions of gallons of fuel, according to industry. And they even reduce aircraft noise a bit.
      Then there are the things you won’t see. It may be a piece of technology buried deep within your jet engine to help it run more efficiently, or it could be computer software installed in air traffic control centers to help controllers manage your flight, gate-to-gate, more efficiently with reduced delays, all in a way that’s more sustainable and friendly to our planet Earth.  
      3. Visit your local science museum or NASA visitor center.
      Exhibits about aviation and on how an airplane flies are popular staples of local science museums. Check out your local science center to see if they’re open and if they have any exhibits on aviation. And even if they don’t, it never hurts to spend some time learning about science.
      And if you live within a short drive from Norfolk, VA; Cleveland, OH; or San Francisco, CA, you might consider checking out the visitors centers associated with NASA’s Langley Research Center, Glenn Research Center, or Ames Research Center, respectively. These major NASA field centers play host to the majority of NASA’s aeronautics research. (NASA’s Armstrong Flight Research Center, the fourth of NASA’s aeronautics centers, is located within the restricted area of Edwards Air Force Base, CA, so they do not have a public visitor’s center.)
      4. Watch an aviation-themed movie.
      There’s no shortage of classic aviation-themed movies available to watch in whatever format (DVD, streaming online, in the theater, etc.), from whatever source (Red Box, Netflix, your own library, etc.), and with whatever snacks (popcorn, nachos, Sno-Caps, etc.) are your favorite.
      We dare not attempt a comprehensive list because we wouldn’t be able to satisfy everyone’s tastes, but a few NASA aeronautics staff favorites include Jimmy Stewart’s “The Spirit of St. Louis” and “Strategic Air Command,” John Wayne’s “Jet Pilot” (featuring the last time Chuck Yeager flew the X-1 rocket plane), National Geographic’s “Living in the Age of Airplanes,” and Disney’s animated “Planes.” Movies that combine aviation and space can be fun, such as “The Right Stuff” or the documentary “One More Orbit,” which tells how former NASA astronaut Terry Virts attempts to break the speed record for circling Earth over the poles in a business jet.
      5. Take an introductory flight lesson.
      Pilots will tell you there is a wonderful sense of freedom in flying, not to mention the incredible views and the personal sense of accomplishment that comes from mastering the skills required to fly. At the same time being a pilot is not for everyone – but you won’t know unless you try!
      Most general aviation airports in the nation have a flight school that offers an introductory flight lesson at a discounted price. Many airports have flying clubs that will introduce you to flight. You also might check to see if there is a Civil Air Patrol in your area.
      And if you want a taste of flight from the cockpit without leaving the ground, commercial computer desktop flight simulators such as X-Plane or Microsoft’s Flight Simulator are popular choices and can get you into the virtual sky in short order.
      6. Build an airplane
      Why not? It doesn’t have to be big enough to actually fly in – although homebuilt airplane kits are available if you have the money, time and perseverance to complete the job.
      Putting together a smaller plastic model kit of one of the world’s most historic aircraft can be just as rewarding and just as educational, especially for younger kids who might be thinking about a career as an engineer or aerospace technician.
      In fact, many astronauts will tell you their love of aviation and space began with putting models together as a child. Another idea: Grab some LEGO bricks and build the airplane of your dreams, or perhaps one based on real NASA work like these folks did.
      Or make it easy on yourself: fold a paper airplane like this one of NASA’s X-59 Quiet SuperSonic Technology aircraft and shoot it across the room. Sometimes simple works best.
      7. Tell us about your first flight
      Ten years ago, for National Aviation Day in 2014, we asked some fellow NASA workers for stories about their first flights. We received some great ones, and we’d love to hear from you about the first time you ever flew in a plane. Post your story online and be sure to use #NationalAviationDay so we find you. Tell us about the first time you took to the air. Where were you traveling? Why? Do you remember what kind of airplane it was? Were you thrilled, or a little scared? Let us know!
      8. Follow what we’re doing to transform aviation.
      NASA’s aeronautical innovators are working to transform air transportation to meet the future needs of the global aviation community. Sounds like a big job, right? It is and there are many ways in which NASA is doing this. Improving an airplane’s aerodynamics, reducing the amount of fuel used by airplanes, making airplanes of all sizes quieter, decreasing the amount of harmful emissions released into the atmosphere, working with the Federal Aviation Administration to improve the efficiency of air traffic control – the list could go on for many thousands of more words. Bookmark our NASA Aeronautics home page and follow us on Twitter @NASAaero.
      There’s also some great education resources that not only help you learn about NASA’s aeronautics research, but about aviation in general. Visit our Aeronautics STEM page to download activities, fact sheets, coloring pages for kids, and much more. Even more fun things to do at home can be found here.
      9. Visit your local library or download a NASA e-book
      Aviation-themed books, whether fact or fiction, are all over the shelves of your local library – literally. That’s because there’s no single Dewey Decimal number for aviation. A book about aviation history will be in a different section of the library than a book about how to design an airplane. And fictional books such as the Arthur Hailey classic “Airport,” or autobiographies such as Chuck Yeager’s “Yeager,” are off on yet another shelf. Don’t hesitate to ask your reference librarian for help. And when you get back from the library, or while still there, jump online and check out the NASA e-books you can download and own for free.
      10. Have a plane spotting picnic near an airport.
      At Washington DC’s Ronald Reagan airport it’s Gravelly Point. In Minneapolis it’s a new viewing location right in the middle of the airport. If you live near a major international airport, chances are you know the best place where the locals can go to watch aircraft take off and land. Be sure to take heed of any security restrictions about where you can and can’t go.
      But once you have your spot picked out then load up your picnic basket with lots of goodies and camp out next to the airport for an afternoon of plane spotting. See how many different types of airplanes you can count or identify. For a truly up-close and personal experience, bring a scanner radio and listen in on air traffic control. Helpful plane spotting tips, as well as livestreams of airport activity, are easily found online with the help of your favorite search engine.
      BONUS IDEA: Get to Know our Faces of Flight
      NASA / Maria Werries In honor of National Aviation Day, we’ve put together a collection of pictures, videos, and stories that showcase some of NASA Aeronautics’ aeronautical innovators who are working to safely transform aviation for the 21st century. See, watch, and read their stories with this up close and personal look,
      Enjoy this special feature here!
      About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 35 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read Orville Wright and National Aviation Day
      Article 2 days ago 3 min read NASA’s X-59 Progresses Through Tests on the Path to Flight
      Article 5 days ago 3 min read NASA Aircraft Gathers 150 Hours of Data to Better Understand Earth
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 18, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...