Members Can Post Anonymously On This Site
Life After Death? Study Reveals Near-Death Experiences Are Not Hallucinations!
-
Similar Topics
-
By NASA
Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed.
A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.
“We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks.
“It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth.
Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
“Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
Article 10 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA-supported scientists have suggested an updated framework for the role of ferns in environmental recovery from disaster. Instead of competing with other organisms, ferns may act as facilitators that ease the way for other plants and animals to re-establish themselves in a damaged landscape.
The study examines how a biosphere recovers from major upheaval, be it from wildfires or asteroid impacts, using what scientists call a ‘facilitative’ framework (where the actions of organisms help each other) rather than the long-held ‘competition-based’ framework.
NASA supported researchers at a fossil plant quarry near the Old Raton Pass Cretaceous–Paleogene (K-Pg) boundary in New Mexico.Ellen Currano Ferns are a common type of vascular plant found in woodlands, gardens, and many a plant pot on apartment shelves. Unlike many other vascular plants, ferns do not flower or seed. Instead, they reproduce via spores. Ferns first appeared on Earth some 360 million years ago during the Devonian period and, prior to the evolution of flowering plants, were the most common vascular plant on Earth.
Ferns are often one of the first plants to re-establish in areas affected by large-scale upheaval events, and it has been suggested that this is because ferns produce spores in great amounts that are widely distributed on the wind. Some scientists, particularly in the fields of geology and paleontology, have used this ‘competitive’ success of ferns as a foundation for ecological theories about how recolonization happens after upheavals.
However, in recent years, growing research has shown that recovery is not only about competition. Positive interactions, known as facilitation, between ferns and other species also play a significant role. The authors of the recent study believe that it is time to re-examine positive interactions within ecosystems, rather than defaulting to a competition framework.
Ferns in History
“I love to imagine ecosystems through time and play a game in my head where I ask myself, ’if I could stand here for 1 million years, would this fossilize?’” said lead author Lauren Azevedo Schmidt of the University of California at Davis. “Because of the mental time gymnastics I do, my research questions follow the same pathway. How do I create synergy between modern and paleo research?”
Early Paleocene fern fossil discovered on the Vermejo Park Ranch, NM. Photo by Ellen Currano.Ellen Currano The team examined ideas that have been developed based on observing modern organisms as well as ancient populations in the fossil record. They propose that, rather than out-competing other species, ferns act as facilitators for ecosystem recovery by stabilizing the ground, enhancing properties of the soil, and mediating competition between other organisms. This repositions ferns as facilitators of ecological recovery within disturbed habitats. This has broad implications for understanding how a community recovers and the importance of positive interactions following disturbance events. Because ferns are among the oldest lineages of plants on Earth and have experienced unimaginable climates and extinction events, they provide critical information to better understand the fossil record and Earth before humans.
Fossil plant excavation in the Cretaceous rocks just below the K-Pg boundary at Old Raton Pass, NM. Photo by Ellen Currano.Ellen Currano “The Cretaceous – Paleogene [K-Pg] extinction event reworked Earth’s biosphere, resulting in approximately 75% of species going extinct, with up to 90% of plants going extinct,” said Azevedo Schmidt. “This magnitude of devastation is something humans (luckily) have never had to deal with, making it hard to even think about. But it is something we must consider when tackling research/issues surrounding exobiology.”
The longevity of ferns on Earth provides a view into the evolution of life on Earth, even through some of the planet’s most devastating disasters. This is of interest to astrobiology and exobiology because exploring how environmental factors can and have impacted the large-scale evolution of life on Earth through mass extinctions and mass radiation events can help us understand the potential for the origin, evolution and distribution for life elsewhere in the Universe.
Ferns in Space
In addition to their relevance to astrobiology, the resilience of ferns and their ability to help heal a damaged environment could also make them important partners for future human missions in space. NASA’s Space Biology program has supported experiments to study how plants adapt to space with the expectation that knowledge gained can lead to ways by which crops can be cultivated for fresh food. Lessons learned from studying resilient plants, such as ferns, could guide efforts to make crops adapt better to harsh space conditions so they can serve as a reliable food source as humans explore destinations beyond our planet. Previous studies have also looked at how plants might keep air clean in enclosed spaces like the International Space Station or in habitats on the Moon or Mars.
NASA supported scientists can be seen prospecting for plant fossils in Berwind Canyon, CO. Photo by Ellen Currano.Ellen Currano “Ferns were able to completely transform Earth’s biosphere following the devastation of the K-Pg [Cretaceous–Paleogene] extinction event. The environment experienced continental-scale fires, acid rain, and nuclear winter, but ferns were able to tolerate unbelievable stress and make their environment better,” says Azevedo Schmidt. “I think we can all learn something from the mighty ferns.”
The study, “Ferns as facilitators of community recovery following biotic upheaval,” was published in the journal BioScience [doi:10.1093/biosci/biae022]
For more information on NASA’s Astrobiology program, visit:
https://www.science.nasa.gov/astrobiology
-end-
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Explore More
2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
Article 1 month ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
Article 2 months ago 5 min read NASA: New Insights into How Mars Became Uninhabitable
Article 2 months ago Share
Details
Last Updated Dec 20, 2024 Related Terms
Astrobiology View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity) is one of 10 payloads flying aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative. The instrument is equipped with a drilling system and thermal probe designed to dig into the lunar surface. Photo courtesy: Firefly Aerospace Earth’s nearest neighboring body in the solar system is its Moon, yet to date humans have physically explored just 5% of its surface. It wasn’t until 2023 – building on Apollo-era data and more detailed studies made in 2011-2012 by NASA’s automated GRAIL (Gravity Recovery and Interior Laboratory) mission – that researchers conclusively determined that the Moon has a liquid outer core surrounding a solid inner core.
As NASA and its industry partners plan for continued exploration of the Moon under Artemis in preparation for future long-duration missions to Mars, improving our understanding of Earth’s 4.5-billion-year-old Moon will help teams of researchers and astronauts find the safest ways to study and live and work on the lunar surface.
That improved understanding is the primary goal of a state-of-the-art science instrument called LISTER (Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed jointly by Texas Tech University in Lubbock and Honeybee Robotics of Altadena, California, LISTER will measure the flow of heat from the Moon’s interior. Its sophisticated pneumatic drill will penetrate to a depth of three meters into the dusty lunar regolith. Every half-meter it descends, the drilling system will pause and extend a custom-built thermal probe into the lunar regolith. LISTER will measure two different aspects of heat flow: thermal gradient, or the changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it.
“By making similar measurements at multiple locations on the lunar surface, we can reconstruct the thermal evolution of the Moon,” said Dr. Seiichi Nagihara, principal investigator for the mission and a geophysics professor at Texas Tech. “That will permit scientists to retrace the geological processes that shaped the Moon from its start as a ball of molten rock, which gradually cooled off by releasing its internal heat into space.”
Demonstrating the drill’s effectiveness could lead to more innovative drilling capabilities, enabling future exploration of the Moon, Mars, and other celestial bodies.. The science collected by LISTER aims to contribute to our knowledge of lunar geology, improving our ability to establish a long-term presence on the Moon under the Artemis campaign.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Dec 18, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
Article 4 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 5 hours ago 4 min read New Commercial Artemis Moon Rovers Undergo Testing at NASA
Article 6 hours ago Keep Exploring Discover Related Topics
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Moon
The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
Marshall Space Flight Center
Solar System
View the full article
-
By NASA
4 min read
NASA Open Science Reveals Sounds of Space
A composite image of the Crab Nebula features X-rays from Chandra (blue and white), optical data from Hubble (purple), and infrared data from Spitzer (pink). This image is one of several that can be experienced as a sonification through Chandra’s Universe of Sound project. X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech NASA has a long history of translating astronomy data into beautiful images that are beloved by the public. Through its Chandra X-ray Observatory and Universe of Learning programs, NASA brings that principle into the world of audio in a project known as “A Universe of Sound.” The team has converted openly available data from Chandra, supplemented by open data from other observatories, into dozens of “sonifications,” with more on the way.
Following the open science principle of accessibility, “A Universe of Sound” helps members of the public who are blind or low vision experience NASA data in a new sensory way. Sighted users also enjoy listening to the sonifications.
“Open science is this way to not just have data archives that are accessible and incredibly rich, but also to enhance the data outputs themselves,” said Dr. Kimberly Arcand, the visualization scientist and emerging technology lead at Chandra and member of NASA’s Universe of Learning who heads up the sonification team. “I want everybody to have the same type of access to this data that I do as a scientist. Sonification is just one of those steps.”
Data sonification of the Milky Way galactic center, made using data from NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope. While the Chandra telescope provides data in X-ray wavelengths for most of the sonifications, the team also took open data from other observatories to create a fuller picture of the universe. Types of data used to create some of the sonifications include visual and ultraviolet light from the Hubble Space Telescope, infrared and visual light from the James Webb Space Telescope, and infrared light from the now-retired Spitzer Space Telescope.
The sonification team, which includes astrophysicist Matt Russo, musician Andrew Santaguida (both of the SYSTEM Sounds project), consultant Christine Malec, and Dr. Arcand, assigned each wavelength of observation to a different musical instrument or synthesized sound to create a symphony of data. Making the separate layers publicly available was important to the team to help listeners understand the data better.
“It’s not just about accessibility. It’s also about reproducibility,” Arcand said. “We’re being very specific with providing all of the layers of sound, and then describing what those layers are doing to make it more transparent and obvious which steps were taken and what process of translation has occurred.”
For example, in a sonification of the supernova remnant Cassiopeia A, modified piano sounds represent X-ray data from Chandra, strings and brass represent infrared data from Webb and Spitzer, and small cymbals represent stars located via visual light data from Hubble.
Data sonification of the Cassiopeia A supernova remnant, made using data from NASA’s Chandra X-ray Observatory, James Webb Space Telescope, and Hubble Space Telescope. The team brought together people of various backgrounds to make the project a success – scientists to obtain and interpret the data, audio engineers to mix the sonifications, and members of the blind and low vision community to direct the product into something that brought a greater understanding of the data.
“Another benefit to open science is it tends to open those pathways of collaboration,” Arcand said. “We invite lots of different community members into the process to make sure we’re creating something that adds value, that adds to the greater good, and that makes the investment in the data worthwhile.”
A documentary about the sonifications called “Listen to the Universe” is hosted on NASA+. Visitors can listen to all the team’s sonifications, including the separate layers from each wavelength of observation, on the Universe of Sound website.
By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer
Share
Details
Last Updated Dec 17, 2024 Related Terms
Chandra X-Ray Observatory Galaxies Open Science Stars Explore More
7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
Article
2 days ago
2 min read Hubble Images a Grand Spiral
Article
5 days ago
6 min read Found: First Actively Forming Galaxy as Lightweight as Young Milky Way
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.