Jump to content

Recommended Posts

Posted
Webb_s_instruments_meet_MIRI_card_full.j Video: 00:01:00

The James Webb Space Telescope will explore the infrared Universe.

It will use four cutting-edge instruments, including the Mid-InfraRed Instrument. MIRI is one of Europe's contributions to the James Webb Space Telescope.

MIRI supports all of Webb’s science goals. It will image the Universe, study planets around our own and other stars and investigate stars and galaxies across cosmic history.

The instsrument will be kept extra cold by its very own ‘cryocooler’. This stops heat from Webb disrupting MIRI’s detectors, so the sensitive instrument can see mid-infrared light.

Webb is an international partnership between NASA, ESA and CSA

Learn more about MIRI here: https://www.esa.int/Science_Exploration/Space_Science/MIRI_factsheet

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      For astronauts aboard the International Space Station, staying connected to loved ones and maintaining a sense of normalcy is critical. That is where Tandra Gill Spain, a computer resources senior project manager in NASA’s Avionics and Software Office, comes in. Spain leads the integration of applications on Apple devices and the hardware integration on the Joint Station Local Area Network, which connects the systems from various space agencies on the International Space Station. She also provides technical lead support to the Systems Engineering and Space Operations Computing teams and certifies hardware for use on the orbiting laboratory. 

      Spain shares about her career with NASA and more. Read on to learn about her story, her favorite project, and the advice she has for the next generation of explorers. 
      Tandra Spain’s official NASA portrait. NASA Where are you from? 
      I am from Milwaukee, Wisconsin. 

      Tell us about your role at NASA. 
      I am the Apple subsystem manager where I lead the integration of applications on Apple devices as well as the hardware integration on the Joint Station Local Area Network. We use a variety of different software but I work specifically with our Apple products. I also provide technical lead support to the Systems Engineering and Space Operations Computing teams. In addition, I select and oversee the certification of hardware for use on the International Space Station, and I research commonly used technology and assess applicability to space operations.   

      How would you describe your job to family or friends who may not be familiar with NASA? 
      I normalize living and working in space by providing the comforts and conveniences of living on Earth.
      Tandra spain
      Computer Resources Senior Project Manager
      I get the opportunity to provide the iPads and associated applications that give astronauts the resources to access the internet. Having access to the internet affords them the opportunity to stay as connected as they desire with what is going on back home on Earth (e.g., stream media content, stay in touch with family and friends, and even pay bills). I also provide hardware such as Bluetooth speakers, AirPods, video projectors, and screens. 

      How long have you been working for NASA? 
      I have been with the agency for 30 years, including 22 years as a contractor. 
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      I have found that there is a place for just about everyone at NASA, therefore, follow your passion.  Although many of us are, you don’t have to be a scientist or engineer to work at NASA. Yearn to learn.  Pause and listen to those around you. You don’t know what you don’t know, and you will be amazed what gems you’ll learn in the most unexpected situations. 

      Additionally, be flexible and find gratitude in every experience. Many of the roles that I’ve had over the years didn’t come from a well-crafted, laid-out plan that I executed, but came from taking advantage of the opportunities that presented themselves and doing them to the best of my ability. 
      Tandra Spain and her husband, Ivan, with NASA astronaut and Flight Director TJ Creamer when she was awarded the Silver Snoopy Award. What was your path to NASA? 
      I moved to Houston to work at NASA’s Johnson Space Center immediately upon graduating from college. 

      Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?  
      I spent over half of my career in the Astronaut Office, and I’ve been influenced in different ways by different people, so it wouldn’t be fair to pick just one! 

      What is your favorite NASA memory? 
      I’ve worked on so many meaningful projects, but there are two recent projects that stand out.

      Humans were not created to be alone, and connection is extremely important. I was able to provide a telehealth platform for astronauts to autonomously video conference with friends and family whenever an internet connection is available. Prior to having this capability, crew were limited to one scheduled video conference a week. It makes me emotional to think that we have moms and dads orbiting the Earth on the space station and they can see their babies before they go to bed, when they wake up in the morning, or even in the middle of the night if needed.  

      In addition, since iPads are used for work as well as personal activities on station, it is important for my team to be able to efficiently keep the applications and security patches up to date. We completed the software integration and are in the process of wrapping up the certification of the Mac Mini to provide this capability. This will allow us to keep up with all software updates that Apple releases on a regular basis and minimize the amount of crew and flight controller team time associated with the task by approximately 85%. 
      Tandra Spain, her mother, Marva Herndon, and her daughter, Sasha, at her daughter’s high school graduation in 2024. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth? 
      When I speak to the public about the space station, I like to compare our everyday lives on Earth to life on the station and highlight the use of technology to maintain the connection to those on Earth. For example, most people have a phone. Besides making a phone call, what do you use your phone for? It is amazing to know that the same capabilities exist on station, such as using apps, participating in parent teacher conferences, and more. 

      If you could have dinner with any astronaut, past or present, who would it be? 
      I would have dinner with NASA astronaut Ron McNair. He graduated from the same university as I did, and I’ve heard great stories about him. 

      Do you have a favorite space-related memory or moment that stands out to you? 
      As I mentioned previously, human connection is extremely important. As an engineer in the Astronaut Office, I worked on a project that provided more frequent email updates when Ku-Band communication was available. Previously, email was synced two to three times a day, and less on the weekend. When the capability went active, I sent the first email exchange. 

      What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?  
      There have been so many projects over the past 30 years that I don’t think I could select just one. There is something however, that I’ve done on many occasions that has brought me pure joy, which is attending outreach events as Johnson’s “Cosmo” mascot, especially Houston Astros games.    
      Tandra Spain representing NASA as “Cosmo” the astronaut mascot at a Houston Astros baseball game. What are your hobbies/things you enjoy outside of work? 
      I enjoy crafting, traveling, mentoring students in Pearland Independent School District, spending time with family, and my Rooted Together community. 

      Day launch or night launch?  
      Night launch! 

      Favorite space movie? 
      Star Wars (the original version) 

      NASA “worm” or “meatball” logo? 
      Meatball 
      Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.  

      Sign up for our weekly email newsletter to get the updates delivered directly to you.  

      Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.  
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      With more than 17 years of experience at NASA, Lindsai Bland has been an integral part of the agency, contributing to multiple Earth observing system missions at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Now, Bland ensures the agency’s communications and navigation resources meet overall needs and requirements as the Mission Operations Interface Lead for NASA’s SCaN (Space Communications and Navigation) program. 

      This sunset photo shows Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California, part of NASA’s Deep Space Network. The network’s three complexes around the globe support communications with dozens of deep space missions. DSS-14 is also the agency’s Goldstone Solar System Radar, which is used to observe asteroids that come close to Earth. The program, managed through the agency’s Space Operations Mission Directorate, is responsible for all of NASA’s space communications operations, including the Near Space Network and Deep Space Network, which have enabled the success of more than 100 NASA and non-NASA missions. Astronauts aboard the International Space Station, missions monitoring Earth’s weather and effects of climate change, and spacecraft exploring the Moon and beyond all depend on NASA’s Near Space and Deep Space Networks to provide robust communications services. As interface lead, Bland works with teams to guarantee that critical data is transmitted between spacecraft and desired control center.  

      “Working with the SCaN program gives me the opportunity to be a part of a variety of mission types with endless science objectives,” said Bland. “Joining this team has been a highlight of my career, and tackling new challenges has been incredibly rewarding.” 
      Looking ahead, Bland envisions that NASA will persevere in expanding the boundaries of space exploration, especially as the agency partners with international and U.S. industry in support of commercially owned and operated low Earth orbit destinations. 

      Lindsai Bland, Mission Operations Interface Lead for the Space Communications and Navigation Division
      “I think NASA will continue to push the boundaries of the aerospace industry and physical science studies,” she says. “NASA will take risks in exploration, bringing along industries and businesses to help further our goals.” 

      Outside of her work at NASA, Bland is passionate about the arts. She was an avid dancer from a young age, training in ballet, modern, and jazz. Bland also enjoys making her own cosmetics. She believes strongly in giving back to her community and dedicates some of her personal time to community services effort around Montgomery County, Maryland. 

      Bland’s career at NASA is a testament to her dedication, expertise, and passion for science and space exploration. Bland will continue to NASA’s mission in expand our understanding and study of our solar system and universe in captivating new ways. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 

      To learn more about NASA’s Space Operation Mission Directorate, visit:  
      https://www.nasa.gov/directorates/space-operations

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
      Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
      How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

      The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
      Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
      Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
      Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
      Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
      Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
      Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
      Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
      Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
      Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 
      Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

      Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov

      Natalia Riusech / Nilufar Ramji  
      Johnson Space Center, Houston 
      281-483-5111 
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      View the full article
    • By NASA
      Technicians have successfully integrated NASA’s Nancy Grace Roman Space Telescope’s payload – the telescope, instrument carrier, and two instruments – to the spacecraft that will deliver the observatory to its place in space and enable it to function while there.
      “With this incredible milestone, Roman remains on track for launch, and we’re a big step closer to unveiling the cosmos as never before,” said Mark Clampin, acting deputy associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “It’s been fantastic to watch the team’s progress throughout the integration phase. I look forward to Roman’s transformative observations.”
      Technicians recently integrated the payload – telescope, instrument carrier, and two instruments – for NASA’s Nancy Grace Roman Space Telescope in the big clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn The newly joined space hardware will now undergo extensive testing. The first test will ensure each major element operates as designed when integrated with the rest of the observatory and establish the hardware’s combined performance. Then environmental tests will subject the payload to the electromagnetic, vibration, and thermal vacuum environments it will experience during launch and on-orbit operations. These tests will ensure the hardware and the launch vehicle will not interfere with each other when operating, verify the communications antennas won’t create electromagnetic interference with other observatory hardware, shake the assembly to make sure it will survive extreme vibration during launch, assess its performance across its expected range of operating temperatures, and make sure the instruments and mirrors are properly optically aligned.
      Meanwhile, Roman’s deployable aperture cover will be integrated with the outer barrel assembly, and then the solar panels will be added before spring. Then the structure will be joined to the payload and spacecraft this fall.
      The Roman mission remains on track for completion by fall 2026 and launch no later than May 2027.
      Virtually tour an interactive version of the telescope By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Jan 08, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
      4 min read NASA Successfully Integrates Roman Mission’s Telescope, Instruments
      Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 6 months ago 4 min read NASA’s Roman Space Telescope’s ‘Exoskeleton’ Whirls Through Major Test
      Article 3 months ago N
      View the full article
  • Check out these Videos

×
×
  • Create New...