Members Can Post Anonymously On This Site
Eye on world health
-
Similar Topics
-
By NASA
With two months to go before flight, the Apollo 13 prime crew of James Lovell, Thomas Mattingly, Fred Haise, and backups John Young, John Swigert, and Charles Duke continued to train for the 10-day mission planned to land in the Fra Mauro highlands region of the Moon. Engineers continued to prepare the Saturn V rocket and spacecraft at the launch pad for the April 11, 1970, liftoff and completed the Flight Readiness Test of the vehicle. All six astronauts spent many hours in flight simulators training while the Moon walkers practiced landing the Lunar Module and rehearsed their planned Moon walks. The crew for the next Moon landing mission, Apollo 14, participated in a geology field trip as part of their training for the flight then planned for October 1970. Meanwhile, NASA released Apollo 12 lunar samples to scientists and the Apollo 12 crew set off on a Presidential world goodwill tour.
At NASA’s Kennedy Space Center in Florida, engineers completed the Flight Readiness Test of the Apollo 13 Saturn V on Feb. 26. The test ensured that all systems are flight ready and compatible with ground support equipment, and the astronauts simulated portions of the countdown and powered flight. Successful completion of the readiness test cleared the way for a countdown dress rehearsal at the end of March.
John Young prepares for a flight aboard the Lunar Landing Training Vehicle.NASA John Young after a training flight aboard the landing trainer. NASA Fred Haise prepares for a flight at the Lunar Landing Research Facility. NASA One of the greatest challenges astronauts faced during a lunar mission entailed completing a safe landing on the lunar surface. In addition to time spent in simulators, Apollo mission commanders and their backups trained for the final few hundred feet of the descent using the Lunar Landing Training Vehicle at Ellington Air Force Base near the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston. Bell Aerosystems of Buffalo, New York, built the trainer for NASA to simulate the flying characteristics of the Lunar Module. Lovell and Young completed several flights in February 1970. Due to scheduling constraints with the trainer, lunar module pilots trained for their role in the landing using the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, Virginia. Haise and Duke completed training sessions at the Langley facility in February.
Charles Duke practices Lunar Module egress during a KC-135 parabolic flight. NASA Charles Duke rehearses unstowing equipment from the Lunar Module during a KC-135 parabolic flight. NASA The astronauts trained for moonwalks with parabolic flights aboard NASA’s KC-135 aircraft that simulated the low lunar gravity, practicing their ladder descent to the surface. On the ground, they rehearsed the moonwalks, setting up the American flag and the large S-band communications antenna, and collecting lunar samples. Engineers improved their spacesuits to make the expected longer spacewalks more comfortable for the crew members by installing eight-ounce bags of water inside the helmets for hydration.
James Lovell, left, and Fred Haise practice setting up science equipment, the American flag, and the S-band antenna.NASA Lovell, left, and Haise practice collecting rock samples. NASA John Young, left, and Charles Duke train to collect rock samples. NASA Fred Haise, left, and James Lovell practice lowering the Apollo Lunar Surface Experiment Package from the Lunar Module.NASA Lovell, left, and Haise practice setting up the experiments. NASA Lovell, left, and Haise practice drilling for the Heat Flow Experiment. NASA During their 35 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of four investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. The four experiments included the:
Charged Particle Lunar Environment Experiment designed to measure the flexes of charged particles Cold Cathode Gauge Experiment designed to measure the pressure of the lunar atmosphere Heat Flow Experiment designed to make thermal measurements of the lunar subsurface Passive Seismic Experiment designed to measure any moonquakes, either naturally occurring or caused by artificial means As an additional investigation, the astronauts planned to deploy and retrieve the Solar Wind Composition experiment, a sheet of aluminum foil to collect particles from the solar wind for analysis by scientists back on Earth after about 20 hours of exposure on the lunar surface.
Apollo 14 astronauts Eugene Cernan, left, Joe Engle, Edgar Mitchell, and Alan Shepard with geologist Richard Jahns in the Pinacates Mountains of northern Mexico. NASA Shepard, left, Engle, Mitchell, and Cernan training with the Modular Equipment Transporter, accompanied by geologist Jahns. NASA With one lunar mission just two months away, NASA continued preparations for the following flight, Apollo 14, then scheduled for October 1970 with a landing targeted for the Littrow region of the Moon, an area scientists believed to be of volcanic origin. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle learned spacecraft systems in the simulators. Accompanied by a team of geologists led by Richard Jahns, Shepard, Mitchell, Cernan, and Engle participated in a geology expedition to the Pinacate Mountain Range in northern Mexico Feb. 14-18, 1970. The astronauts practiced using the Modular Equipment Transporter, a two-wheeled conveyance to transport tools and samples on the lunar surface.
Mail out of the Apollo 12 lunar samples. Apollo 12 astronauts Charles Conrad, left, Richard Gordon, and Alan Bean ride in a motorcade in Lima, Peru.NASA On Feb. 13, 1970, NASA began releasing Apollo 12 lunar samples to 139 U.S. and 54 international scientists in 16 countries, a total of 28.6 pounds of material. On Feb. 16, Apollo 12 astronauts Charles Conrad, Richard Gordon, and Alan Bean, accompanied by their wives and NASA and State Department officials, departed Houston’s Ellington Air Force Base for their 38-day Bullseye Presidential Goodwill World Tour. They first traveled to Latin America, making stops in Venezuela, Peru, Chile, and Panama before continuing on to Europe, Africa, and Asia.
The groundbreaking science and discoveries made during Apollo missions has pushed NASA to explore the Moon more than ever before through the Artemis program. Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors.
Explore More
10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
Article 2 months ago 23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
Article 3 months ago 9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
Article 4 months ago View the full article
-
By NASA
4 Min Read Heart Health
Jessica Meir conducts cardiac research in the space station’s Life Sciences Glovebox. Credits: NASA Science in Space: February 2025
February was first proclaimed as American Heart Month in 1964. Since then, its 28 (or 29) days have served as an opportunity to encourage people to focus on their cardiovascular health.
The International Space Station serves as a platform for a variety of ongoing research on human health, including how different body systems adapt to weightlessness. This research includes assessing cardiovascular health in astronauts during and after spaceflight and other studies using models of the cardiovascular system, such as tissue cultures. The goal of this work is to help promote heart health for humans in space and everyone on Earth. For this Heart Month, here is a look at some of this spaceflight research
Building a better heart model
Media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA Microgravity exposure is known to cause changes in cardiovascular function. Engineered Heart Tissues assessed these changes using 3D cultured cardiac tissues that model the behavior of actual heart tissues better than traditional cell cultures. When exposed to weightlessness, these “heart-on-a-chip” cells behaved in a manner similar to aging on Earth. This finding suggests that these engineered tissues can be used to investigate the effects of space radiation and long-duration spaceflight on cardiac function. Engineered tissues also could support development of measures to help protect crew members during a mission to Mars. Advanced 3D culture methodology may inform development of strategies to prevent and treat cardiac diseases on Earth as well.
Private astronaut heart health
In April 2022, the 11-person station crew included (clockwise on the outside from bottom right) NASA astronaut Tom Marshburn; Roscomos cosmonauts Oleg Artemyev, Denis Matveev, and Sergey Korsakov; NASA astronauts Raja Chari, Kayla Barron, and Matthias Maurer; and Ax-1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael López-Alegría.-Alegria.NASA For decades, human research in space has focused on professional and government-agency astronauts, but commercial spaceflight opportunities now allow more people to participate in microgravity research. Cardioprotection Ax-1 analyzed cardiovascular and general health in private astronauts on the 17-day Axiom-1 mission.
The study found that 14 health biomarkers related to cardiac, liver, and kidney health remained within normal ranges during the mission, suggesting that spaceflight did not significantly affect the health of the astronaut subjects. This study paves the way for monitoring and studying the effects of spaceflight on private astronauts and developing health management plans for commercial space providers.
Better measurements for better health
ESA astronaut Tim Peake conducts operations for the Vascular Echo experiment. NASA Vascular Echo, an investigation from CSA (Canadian Space Agency), examined blood vessels and the heart using a variety of tools, including ultrasound. A published study suggests that 3D imaging technology might better measure cardiac and vascular anatomy than the 2D system routinely used on the space station. The research team also developed a probe for the ultrasound device that better directs the beam, making it possible for someone who is not an expert in sonography to take precise measurements. This technology could help astronauts monitor heart health and treat cardiovascular issues on a long-duration mission to the Moon or Mars. The technology also could help patients on Earth who live in remote locations, where an ultrasound operator may not always be available.
Long-term heart health in space
As part of exploring ways to keep astronauts healthy on missions to the Moon and Mars, NASA is conducting a suite of space station studies called CIPHER that looks at the effects of spaceflight lasting up to a year. One CIPHER study, Vascular Calcium, examines whether calcium lost from bone during spaceflight might deposit in the arteries, increasing vessel stiffness and contributing to increased risk of future cardiovascular disease. Astronaut volunteers provide blood and urine samples and undergo ultrasound and high-resolution scans of their bones and arteries for this investigation. Another CIPHER study, Coronary Responses, uses advanced imaging tests to measure heart and artery response to spaceflight.
These studies will help scientists determine whether spaceflight accelerates narrowing and stiffening of the arteries, known as atherosclerosis, or increases the risk of atrial fibrillation, a rapid and irregular heartbeat seen in middle-aged adults. This work also could help identify potential biomarkers and early warning indicators of cardiovascular disease.
Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Humans In Space
Station Benefits for Humanity
Station Science 101: Human Research
View the full article
-
By NASA
Ambiguity.
That’s the word that comes to mind when documentary photographers start each day at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
PACE mission photographer Denny Henry and lead documentary photographer Desiree Stover pose for selfies in the clean room.Credits: NASA “You walk in and think one thing is happening,” said OCI’s lead documentary photographer Desiree Stover. “But in an instant things change – maybe goes wrong –- and you need to be ready to capture it.”
From build to testing to launch, one figure is always present in the background capturing the story of each Goddard mission – the documentary photographer.
In honor of #WorldPhotoDay, follow along as two of our documentarians share what it’s like to capture the story of Goddard’s latest mission build PACE.
PACE or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail. By measuring the intensity of the color that reflects from Earth’s ocean surface, PACE will capture fine details about tiny plant-like organisms and algae that live in the ocean, called phytoplankton, that are the basis of the marine food web and generate half of Earth’s oxygen.
Crafting the Story
For Stover and her partner Denny Henry, PACE’s lead mission photographer, the story starts with the smallest details.
“I think one of the first things I photographed was the outside of a circuit port box. It was literally an empty metal box,” said Henry, who started photographing PACE in 2020, right before the pandemic. “It might be small, but it’s part of a system that’s going to do big things.”
Mark Walter, David Kim, Melyane Ortiz-acosta, and Ariel Obaldo discuss plans for testing the PACE flight Solar Array Panels.Credits: NASA’s Goddard Space Flight Center/Denny Henry A typical day for these photographers usually starts with a morning meeting, assignments and getting ready. By the end of the day, the original plan has likely been changed, multiple times.
“Some days we might shoot eight photos, other days it might be hundreds or more,” Stover said.
PACE, or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail.Credits: NASA Images captured during shoots are used for a variety of things, especially technical components of the mission. This includes documenting builds, spotting mistakes and testing.
Stover got her start at Goddard by photographing NASA’s James Webb Space Telescope before switching to capturing imagery of Goddard’s small instruments, including PACE’s Ocean Color Instrument, or OCI. This advanced sensor will enable continuous measurement of light throughout the ultraviolet to shortwave infrared spectrum to better understand Earth’s ocean and atmosphere.
She says she’s still in awe that her teammates trust her “eye.”
“One of the most fascinating things about working here is that we have a specific job,” she said. “And even though engineers can pick up a camera and take photos, they don’t. They know we’re the experts at it. They trust our eyes to tell and capture the story.”
Henry said one of the most memorable days he’s documented so far was watching the PACE team integrate the SPEXone instrument into the spacecraft.
“All the partners were there as I photographed. It was a big deal,” he said. “I captured every bolt all the way to the mounting. It’s important to get these details. Six months from now someone who wasn’t there might want to see what was done in what order.”
Henry said that capturing images is only part of the job. For every hour of shooting, there’s also an hour spent processing and working with partners to ensure things were documented correctly.
Playing Detective
While telling the story is important, Stover says that part of the job is speaking up, especially when you notice something wrong.
During one assignment documenting vibration testing, Stover noticed that OCI’s Earth shade looked different.
“We took the bagging off and could see tape peeling off the radiator panels, possibly loose wires in certain places,” she said. “When I saw this, I thought back to what it was like when we shot this the first time.”
Physical Science Technician Kristen Washington performs a contamination inspection of the OCI Flight Fold Flat Mirror optic.Credits: Desiree Stover, NASA Goddard It’s common for the photographers to shoot things twice to examine how things might change when in testing. When Stover saw the tape, she got to work ensuring her hunch was right.
She sent a series of images to the thermal team lead letting him know what she found. Plans were already underway to change the design.
The unexpected
Stover and Henry agree that documenting missions has come with some interesting experiences.
Both had to undergo fall protection harness training in the event they had to climb around one of Goddard’s cleanrooms, something that happened to Stover during one assignment.
“Once I was up in Building 29’s high bay. Like up at the very top in the crane rafters shooting. I never thought I was afraid of heights until that moment,” she said. “But I focused on the image and what task I was accomplishing and completed the assignment without issue.”
Henry said adjusting to Covid-19 required a lot of flexibility, especially with sudden changes.
“This is not a job you can do from home,” he said. “After a few months, we adapted.”
Radio Frequency testing of the PACE Earth Coverage Antenna in the Electromagnetic Anechoic Chamber at Goddard Space Flight Center.Credits: NASA’s Goddard Space Flight Center/Denny Henry Henry said that many times mission teams will find that engineering drawings won’t match up with what was actually built. With the pandemic restrictions, PACE heavily relied on his images to note how things changed and why issues occurred.
As PACE heads toward big milestones in the next year, both Stover and Henry are excited to see their work come together, including the day of launch.
They both agreed that photographing the teams involved in each aspect of PACE’s build is especially rewarding as they help create mementos that go along with their mission’s story.
By: Sara Blumberg
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
By NASA
An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes.
“A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify.
Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
“How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.”
Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies.
Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration.
Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
“You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.”
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
The memorandum provides guidance on travel for Non-Covered Reproductive Health Care Service.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.