Jump to content

Recommended Posts

Posted
Arctic rescue exercise

Today is the annual 406 Day, celebrating the life-saving importance of emergency beacons, named for the radio frequency they operate on, as well as the satellites that relay their signals – with Europe’s own Galileo constellation prominent among them. While Galileo’s main purpose is satellite navigation, the system also picks up distress messages from across the globe and relays them to regional search and rescue authorities.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA NASA astronaut Alan Bean steps off the lunar module ladder in this photo from Nov. 19, 1969, joining astronaut Charles Conrad Jr. on the Moon in the area called the Ocean of Storms. The two would then complete two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting the Surveyor 3 spacecraft, which had landed in the same area. While Bean and Conrad worked on the Moon, astronaut Richard F. Gordon completed science from lunar orbit.
      Learn more about Apollo 12’s pinpoint landing on the Moon.
      Image credit: NASA
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Coastal locations, such as Drakes Bay on the Point Reyes peninsula in Northern California, are increasingly vulnerable to sea level rise.NOAA/NMFS/WCR/CCO The information will help people who live in coastal areas prepare for impacts caused by rising sea levels.
      Earth’s ocean is rising, disrupting livelihoods and infrastructure in coastal communities around the world. Agencies and organizations are working to prepare people as their world changes around them, and NASA information is helping these efforts.
      The agency’s global data is now available in the sea level section of the Earth Information Center. NASA developed the global sea level change website in collaboration with the U.S. Department of Defense, the World Bank, the U.S. Department of State, and the United Nations Development Programme.  
      The site includes information on projected sea level rise through the year 2150 for coastlines around the world, as well as estimates of how much flooding a coastal community or region can expect to see in the next 30 years. The projections come from data collected by NASA and its partners and from computer models of ice sheets and the ocean, as well as the latest sea level assessment from the Intergovernmental Panel on Climate Change, and other sources.
      “NASA innovates for the benefit of humanity. Our cutting-edge instruments and data-driven information tools help communities and organizations respond to natural hazards and extreme weather, and inform critical coastal infrastructure planning decisions,” said Karen St. Germain, director of the Earth science division at NASA Headquarters in Washington.
      Information to Action
      International organizations such as the World Bank will use the data from the global sea level change site for tasks including the creation of Climate Risk Profiles for countries especially vulnerable to sea level rise.
      The Defense Department will continue to incorporate sea level rise data into its plans to anticipate and respond to hazards posed to its facilities by the effects of rising oceans. Similarly, the State Department uses the information for activities ranging from disaster preparedness to long-term adaptation planning to supporting partners around the world in related efforts.
      “We are at a moment of truth in our fight against the climate crisis. The science is unequivocal and must serve as the bedrock upon which decision-making is built. With many communities around the world already facing severe impacts from sea-level rise, this new resource provides a vital tool to help them protect lives and livelihoods. It also illustrates what is at stake between a 1.5-degree-Celsius world and a current-policies trajectory for all coastal communities worldwide,” said Assistant Secretary-General Selwin Hart, special adviser to the United Nations secretary-general on climate action and just transition.
      Rising Faster
      NASA-led data analyses have revealed that between 1970 and 2023, 96% of countries with coastlines have experienced sea level rise. The rate of that global rise has also accelerated, more than doubling from 0.08 inches (0.21 centimeters) per year in 1993 to about 0.18 inches (0.45 centimeters) per year in 2023.
      As the rate of sea level rise increases, millions of people could face the related effects sooner than previously projected, including larger storm surges, more saltwater intrusion into groundwater, and additional high-tide flood days — also known as nuisance floods or sunny day floods.
      “This new platform shows the timing of future floods and the magnitude of rising waters in all coastal countries worldwide, connecting science and physics to impacts on people’s livelihoods and safety,” said Nadya Vinogradova Shiffer, director of the ocean physics program at NASA Headquarters in Washington.
      Data released earlier this year found that Pacific Island nations will experience at least 6 inches (15 centimeters) of sea level rise in the next 30 years. The number of high-tide flood days will increase by an order of magnitude for nearly all Pacific Island nations by the 2050s.
      “The data is clear: Sea levels are rising around the world, and they’re rising faster and faster,” said Ben Hamlington, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California and head of the agency’s sea level change science team. “Having the best information to make decisions about how to plan for rising seas is more crucial than ever.”
      To explore the global sea level change site:
      https://earth.gov/sealevel
      News Media Contacts
       
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-158
      Share
      Details
      Last Updated Nov 13, 2024 Related Terms
      Oceans Climate Change Earth Jet Propulsion Laboratory Natural Disasters Explore More
      5 min read JPL Workforce Update
      Article 17 hours ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 22 hours ago 4 min read NASA-developed Technology Supports Ocean Wind Speed Measurements from Commercial Satellite
      A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now…
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Permafrost Tunnel north of Fairbanks, Alaska, was dug in the 1960s and is run by the U.S. Army’s Cold Regions Research and Engineering Laboratory. It is the site of much research into permafrost — ground that stays frozen throughout the year, for multiple years.NASA/Kate Ramsayer Earth’s far northern reaches have locked carbon underground for millennia. New research paints a picture of a landscape in change.
      A new study, co-authored by NASA scientists, details where and how greenhouse gases are escaping from the Earth’s vast northern permafrost region as the Arctic warms. The frozen soils encircling the Arctic from Alaska to Canada to Siberia store twice as much carbon as currently resides in the atmosphere — hundreds of billions of tons — and most of it has been buried for centuries.
      An international team, led by researchers at Stockholm University, found that from 2000 to 2020, carbon dioxide uptake by the land was largely offset by emissions from it. Overall, they concluded that the region has been a net contributor to global warming in recent decades in large part because of another greenhouse gas, methane, that is shorter-lived but traps significantly more heat per molecule than carbon dioxide.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Greenhouse gases shroud the globe in this animation showing data from 2021. Carbon dioxide is shown in orange; methane is shown in purple. Methane traps heat 28 times more effectively than carbon dioxide over a 100-year timescale. Wetlands are a significant source of such emissions.NASA’s Scientific Visualization Studio The findings reveal a landscape in flux, said Abhishek Chatterjee, a co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “We know that the permafrost region has captured and stored carbon for tens of thousands of years,” he said. “But what we are finding now is that climate-driven changes are tipping the balance toward permafrost being a net source of greenhouse gas emissions.”
      Carbon Stockpile
      Permafrost is ground that has been permanently frozen for anywhere from two years to hundreds of thousands of years. A core of it reveals thick layers of icy soils enriched with dead plant and animal matter that can be dated using radiocarbon and other techniques. When permafrost thaws and decomposes, microbes feed on this organic carbon, releasing some of it as greenhouse gases.
      Unlocking a fraction of the carbon stored in permafrost could further fuel climate change. Temperatures in the Arctic are already warming two to four times faster than the global average, and scientists are learning how thawing permafrost is shifting the region from being a net sink for greenhouse gases to becoming a net source of warming.
      They’ve tracked emissions using ground-based instruments, aircraft, and satellites. One such campaign, NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), is focused on Alaska and western Canada. Yet locating and measuring emissions across the far northern fringes of Earth remains challenging. One obstacle is the vast scale and diversity of the environment, composed of evergreen forests, sprawling tundra, and waterways.
      This map, based on data provided by the National Snow and Ice Data Center, shows the extent of Arctic permafrost. The amount of permafrost underlying the surface ranges from continuous — in the coldest areas — to more isolated and sporadic patches.NASA Earth Observatory Cracks in the Sink
      The new study was undertaken as part of the Global Carbon Project’s RECCAP-2 effort, which brings together different science teams, tools, and datasets to assess regional carbon balances every few years. The authors followed the trail of three greenhouse gases — carbon dioxide, methane, and nitrous oxide — across 7 million square miles (18 million square kilometers) of permafrost terrain from 2000 to 2020.
      Researchers found the region, especially the forests, took up a fraction more carbon dioxide than it released. This uptake was largely offset by carbon dioxide emitted from lakes and rivers, as well as from fires that burned both forest and tundra.
      They also found that the region’s lakes and wetlands were strong sources of methane during those two decades. Their waterlogged soils are low in oxygen while containing large volumes of dead vegetation and animal matter — ripe conditions for hungry microbes. Compared to carbon dioxide, methane can drive significant climate warming in short timescales before breaking down relatively quickly. Methane’s lifespan in the atmosphere is about 10 years, whereas carbon dioxide can last hundreds of years.
      The findings suggest the net change in greenhouse gases helped warm the planet over the 20-year period. But over a 100-year period, emissions and absorptions would mostly cancel each other out. In other words, the region teeters from carbon source to weak sink. The authors noted that events such as extreme wildfires and heat waves are major sources of uncertainty when projecting into the future.
      Bottom Up, Top Down
      The scientists used two main strategies to tally greenhouse gas emissions from the region. “Bottom-up” methods estimate emissions from ground- and air-based measurements and ecosystem models. Top-down methods use atmospheric measurements taken directly from satellite sensors, including those on NASA’s Orbiting Carbon Observatory-2 (OCO-2) and JAXA’s (Japan Aerospace Exploration Agency)Greenhouse Gases Observing Satellite.
      Regarding near-term, 20-year, global warming potential, both scientific approaches aligned on the big picture but differed in magnitude: The bottom-up calculations indicated significantly more warming.
      “This study is one of the first where we are able to integrate different methods and datasets to put together this very comprehensive greenhouse gas budget into one report,” Chatterjee said. “It reveals a very complex picture.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      Written by Sally Younger
      2024-147
      Share
      Details
      Last Updated Oct 29, 2024 Related Terms
      Earth Carbon Cycle Climate Change Greenhouse Gases Jet Propulsion Laboratory Explore More
      6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
      Article 22 hours ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 1 day ago 3 min read High-Altitude ER-2 Flights Get Down-to-Earth Data
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The conference brought together component field commands, Space Force leadership, field commands, mission area teams, and allies and partners to communicate requirements to influence USSF Force Generation, prioritization and sourcing activities.

      View the full article
    • By NASA
      On Oct. 18, 1989, space shuttle Atlantis took off on its fifth flight, STS-34, from NASA’s Kennedy Space Center (KSC) in Florida. Its five-person crew of Commander Donald E. Williams, Pilot Michael J. McCulley, and Mission Specialists Shannon W. Lucid, Franklin R. Chang-Díaz, and Ellen S. Baker flew a five-day mission that deployed the Galileo spacecraft, managed by NASA’s Jet Propulsion Laboratory in Southern California, to study Jupiter. The astronauts deployed Galileo and its upper stage on their first day in space, sending the spacecraft on its six-year journey to the giant outer planet. Following its arrival at Jupiter in December 1995, Galileo deployed its atmospheric probe while the main spacecraft entered orbit around the planet, studying it in great detail for eight years.

      Left: The STS-34 crew of Mission Specialists Shannon W. Lucid, sitting left, Franklin R. Chang-Díaz, and Ellen S. Baker; Commander Donald E. Williams, standing left, and Pilot Michael J. McCulley. Middle: The STS-34 crew patch. Right: The Galileo spacecraft in Atlantis’ payload bay in preparation for STS-34.
      In November 1988, NASA announced Williams, McCulley, Lucid, Chang-Díaz, and Baker as the STS-34 crew for the flight planned for October 1989. Williams and Lucid, both from the Class of 1978, had each flown once before, on STS-51D in April 1985 and STS-51G in June 1985, respectively. Chang-Díaz, selected in 1980, had flown once before on STS-61C in January 1986, while for McCulley and Baker, both selected in 1984, STS-34 represented their first spaceflight. During their five-day mission, the astronauts planned to deploy Galileo and its Inertial Upper Stage (IUS) on the first flight day. Following the Galileo deployment, the astronauts planned to conduct experiments in the middeck and the payload bay.

      Left: Voyager 2 image of Jupiter. Middle: Galileo as it appeared in 1983. Right: Illustration of Galileo’s trajectory from Earth to Jupiter.
      Following the successful Pioneer and Voyager flyby missions, NASA’s next step to study Jupiter in depth involved an ambitious orbiter and atmospheric entry probe. NASA first proposed the Jupiter Orbiter Probe mission in 1975, and Congress approved it in 1977 for a planned 1982 launch on the space shuttle. In 1978, NASA renamed the spacecraft Galileo after the 17th century Italian astronomer who turned his new telescope toward Jupiter and discovered its four largest moons. Delays in the shuttle program and changes in the upper stage to send Galileo from low Earth orbit on to Jupiter resulted in the slip of its launch to May 1986, when on Atlantis’ STS-61G mission, a Centaur upper stage would send the spacecraft toward Jupiter.
      The January 1986 Challenger accident not only halted shuttle flights for 31 months but also canceled the Centaur as an upper stage for the orbiter. Remanifested onto the less powerful IUS, Galileo would require gravity assist maneuvers at Venus and twice at Earth to reach its destination, extending the transit time to six years. Galileo’s launch window extended from Oct. 12 to Nov. 21, 1989, dictated by planetary alignments required for the gravity assists. During the transit, Galileo had the opportunity to pass by two main belt asteroids, providing the first closeup study of this class of objects. Upon arrival at Jupiter, Galileo would release its probe to return data as it descended through Jupiter’s atmosphere while the main spacecraft would enter an elliptical orbit around the planet, from which it would conduct in depth studies for a minimum of 22 months.

      Left: The Galileo atmospheric probe during preflight processing. Middle: The Galileo orbiter during preflight processing. Right: Space shuttle Atlantis arrives at Launch Pad 39B.
      The Galileo atmospheric probe arrived at KSC on April 17 and the main spacecraft on May 16, following which workers joined the two together for preflight testing. Meanwhile, Atlantis returned to KSC on May 15, following the STS-30 mission that deployed the Magellan spacecraft to Venus. The next day workers towed it into the Orbiter Processing Facility to prepare it for STS-34. In KSC’s Vehicle Assembly Building (VAB), workers began stacking the Solid Rocket Boosters (SRB) on June 15, completing the activity on July 22, and then adding the External Tank (ET) on July 30. Atlantis rolled over to the VAB on Aug. 22 for mating with the ET and SRBs. Galileo, now mated to its IUS, transferred to Launch Pad 39B on Aug. 25, awaiting Atlantis’ arrival four days later.
      The next day, workers placed Galileo into Atlantis’ payload bay and began preparations for the Oct. 12 launch. The Terminal Countdown Demonstration Test took place on Sept. 14-15, with the astronauts participating in the final few hours as on launch day. A faulty computer aboard the IUS threatened to delay the mission, but workers replaced it without impacting the planned launch date. The five-member astronaut crew arrived at KSC Oct. 9 for final preparations for the flight and teams began the countdown for launch. A main engine controller problem halted the countdown at T minus 19 hours. The work required to replace it pushed the launch date back to Oct. 17. On that day, the weather at the pad supported a launch, but clouds and rain at the Shuttle Landing Facility several miles away, and later rain at a Transatlantic (TAL) abort site, violated launch constraints, so managers called a 24-hour scrub. The next day, the weather cooperated at all sites, and other than a brief hold to reconfigure Atlantis’ computers from one TAL site to another, the countdown proceeded smoothly.

      Left: STS-34 astronauts pose following their Sept. 6 preflight press conference. Middle: Liftoff of Atlantis on the STS-34 mission. Right: Controllers in the Firing Room watch Atlantis take to the skies.
      Atlantis lifted off Launch Pad 39B at 12:53 p.m. EDT on Oct. 18. As soon as the shuttle cleared the launch tower, control shifted to the Mission Control Center at NASA’s Johnson Space Center in Houston, where Ascent Flight Director Ronald D. Dittemore and his team of controllers, including astronaut Frank L. Culbertson serving as the capsule communicator, or capcom, monitored all aspects of the launch. Following main engine cutoff, Atlantis and its crew had achieved orbit. Forty minutes later, a firing of the two Orbital Maneuvering System (OMS) engines circularized the orbit at 185 miles. The astronauts removed their bulky Launch and Entry Suits (LES) and prepared Atlantis for orbital operations, including opening the payload bay doors.

      Left: Galileo and its Inertial Upper Stage (IUS) in Atlantis’ payload bay, just before deployment. Middle: Galileo and its IUS moments after deployment. Right: Galileo departs from the shuttle.
      Preparations for Galileo’s deployment began shortly thereafter. In Mission Control, Flight Director J. Milton Heflin and his team, including capcom Michael A. Baker, took over to assist the crew with deployment operations. The astronauts activated Galileo and the IUS, and ground teams began checking out their systems, with the first TV from the mission showing the spacecraft and its upper stage in the payload bay. Lucid raised Galileo’s tilt table first to 29 degrees, McCulley oriented Atlantis to the deployment attitude, then Lucid raised the tilt table to the deploy position of 58 degrees. With all systems operating normally, Mission Control gave the go for deploy.
      Six hours and 20 minutes into the mission, Lucid deployed the Jupiter-bound spacecraft and its upper stage, weighing a combined 38,483 pounds. “Galileo is on its way to another world,” Williams called down. The combination glided over the shuttle’s crew compartment. Williams and McCulley fired the two OMS engines to move Atlantis a safe distance away from the IUS burn that took place one hour after deployment, sending Galileo on its circuitous journey through the inner solar system before finally heading to Jupiter. The primary task of the mission accomplished, the astronauts prepared for their first night’s sleep in space.

      STS-34 crew Earth observation photographs. Left: The Dallas-Ft. Worth Metroplex. Middle left: Jamaica. Middle right: Greece. Right: The greater Tokyo area with Mt. Fuji at upper left.
      For the next three days, the STS-34 astronauts focused their attention on the middeck and payload bay experiments, as well as taking photographs of the Earth. Located in the payload bay, the Shuttle Solar Backscatter Ultraviolet experiment, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, measured ozone in the Earth’s atmosphere and compared the results with data obtained by weather satellites at the same locations. The comparisons served to calibrate the weather satellite instruments. Baker conducted the Growth Hormone Concentrations and Distributions in Plants experiment, that investigated the effect of the hormone Auxin in corn shoot tissue. Three days into the mission, she placed plant canisters into a freezer to arrest plant growth and for postflight analysis. Chang-Díaz and Lucid had prime responsibility for the Polymer Morphology experiment, developed by the 3M Company. They used a laptop to control experiment parameters as the hardware melted different samples to see the effects of weightlessness. Baker conducted several medical investigations, including studying blood vessels in the retina, changes in leg volume due to fluid shifts, and carotid blood flow.

      Left: The Shuttle Solar Backscatter Ultraviolet experiment in Atlantis’ payload bay. Middle: Ellen S. Baker, right, performs a carotid blood flow experiment on Franklin R. Chang-Díaz. Right: Chang-Díaz describes the Polymer Mixing experiment.

      Left: The STS-34 crew poses on Atlantis’ fight deck. Middle: Atlantis touches down at Edwards Air Force Base in California. Right: The STS-34 astronauts pose in front of Atlantis.
      On Oct. 23, the astronauts awakened for their final day in space. Because of high winds expected at the primary landing site at Edwards Air Force Base (AFB), managers moved the landing up by two revolutions. In preparation for reentry, the astronauts donned their orange LESs and closed the payload bay doors. Williams and McCulley oriented Atlantis into the deorbit attitude, with the OMS engines facing in the direction of travel. Over the Indian Ocean, they fired the two engines for 2 minutes 48 seconds to bring the spacecraft out of orbit. They reoriented the orbiter to fly with its heat shield exposed to the direction of flight as it encountered Earth’s atmosphere at 419,000 feet. The buildup of ionized gases caused by the heat of reentry prevented communications for about 15 minutes but provided the astronauts a great light show. The entry profile differed slightly from the planned one because Atlantis needed to make up 500 miles of cross range since it returned two orbits early. After completing the Heading Alignment Circle turn, Williams aligned Atlantis with the runway, and McCulley lowered the landing gear. Atlantis touched down and rolled to a stop, ending a 4-day 23-hour 39-minute flight, having completed 79 orbits of the Earth. Following postlanding inspections, workers placed Atlantis atop a Shuttle Carrier Aircraft, a modified Boeing-747, and the combination left Edwards on Oct. 28. Following refueling stops at Biggs Army Airfield in Texas and Columbus AFB in Mississippi, Atlantis and the SCA arrived back at KSC on Oct. 29. Workers began to prepare it for its next flight, STS-36 in February 1990.

      Left: An illustration of Galileo in orbit around Jupiter. Right: Galileo’s major mission events, including encounters with Jupiter’s moons during its eight-year orbital study.
      One hour after deployment from Atlantis, the IUS ignited to send Galileo on its six-year journey to Jupiter, with the spacecraft flying free of the rocket stage 47 minutes later. The spacecraft’s circuitous path took it first to Venus on Feb. 10, 1990, back to Earth on Dec. 8, 1990, and again on Dec. 8, 1992, each time picking up velocity from the gravity assist to send it on to the giant planet. Along the way, Galileo also passed by and imaged the main belt asteroids Gaspra and Ida and observed the crash of Comet Shoemaker-Levy 9 onto Jupiter. On Dec. 7, 1995, the probe plummeted through Jupiter’s dense atmosphere, returning data along the way, until it succumbed to extreme pressures and temperatures. Meanwhile, Galileo entered orbit around Jupiter and far exceeded its 22-month primary mission, finally plunging into the giant planet on Sept. 21, 2003, 14 years after leaving Earth. During its 35 orbits around Jupiter, it studied not only the planet but made close observations of many of its moons, especially its four largest ones, Ganymede, Callisto, Europa, and Io.

      Left: Galileo image of could formations on Jupiter. Right: Closeup image of terrain on Europa.
      Of particular interest to many scientists, Galileo made 11 close encounters with icy Europa, coming as close as 125 miles, revealing incredible details about its surface. Based on Galileo data, scientists now believe a vast ocean lies beneath Europa’s icy crust, and heating from inside the moon may produce conditions favorable for supporting life. NASA’s Europa Clipper, launched on Oct. 14, 2024, hopes to expand on Galileo’s observations when it reaches Jupiter in April 2030.
      Enjoy the crew narrated video of the STS-34 mission. Read Williams‘ recollections of the STS-34 mission in his oral history with the JSC History Office.
      Explore More
      12 min read Five Years Ago: First All Woman Spacewalk
      Article 3 days ago 6 min read Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      Article 6 days ago 24 min read NASA Celebrates Hispanic Heritage Month 2024
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...