Jump to content

Kendall highlights space’s importance, need to ‘transform’ operations & thinking for the domain


Recommended Posts

Presenting a robust case for operating in – and defending – space, Air Force Secretary Frank Kendall said April 5 that “transforming” without delay priorities, practices and spending for the domain is necessary to adequately adapt to a theater that is more volatile yet also increasingly essential to the nation’s security and everyday life.
SECAF Kendall speaks at Space Symposium

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected Sierra Lobo, Inc. of Fremont, Ohio, to provide for test operations, test support, and technical system maintenance activities at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      The NASA Stennis Test Operations Contract is fixed-price, level-of-effort contract that has a value of approximately $47 million. The performance period begins July 1, 2025, and extends three years, with a one-year base period and two one-year option periods.
      The contract will provide test operations support for customers in the NASA Stennis test complex. It also will cover the operation and technical systems maintenance of the high-pressure industrial water, high-pressure gas, and cryogenic propellant storage support areas, as well as providing welding, fabrication, machining, and component processing capabilities.
      NASA Stennis is the nation’s largest propulsion test site, with infrastructure to support projects ranging from component and subscale testing to large engine hot fires. Researchers from NASA, other government agencies, and private industry utilize NASA Stennis test facilities for technology and propulsion research and developmental projects.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      C. Lacy Thompson
      Stennis Space Center, Bay St. Louis, Mississippi
      228-363-5499
      calvin.l.thompson@nasa.gov
      Share
      Details
      Last Updated Nov 21, 2024 LocationNASA Headquarters Related Terms
      Stennis Space Center NASA Centers & Facilities Stennis Test Facility and Support Infrastructure View the full article
    • By Space Force
      Space Delta 5 and the Combined Space Operations Center hosted a three-day working group to collaborate on current efforts for developing a shared Space Common Operational Picture.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      By Wayne Smith
      As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.
      Scientists and engineers from NASA’s Marshall Space Flight Center, participating in the laser beam welding study in August, stand in front of the parabolic plane used for testing. From left, Will Evans, Louise Littles, Emma Jaynes, Andrew O’Connor, and Jeffrey Sowards. Not pictured: Zachary Courtright.Casey Coughlin/Starlab-George Washington Carver Science Park The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity’s next giant leap of sending astronauts to Mars and beyond.
      “For a long time, we’ve used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space,” said Andrew O’Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA’s technical lead for the project. “But we’re starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding.” The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.
      To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.
      “Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we’re still on the ground,” said O’Connor.
      In August 2024, a joint team from Ohio State’s Welding Engineering and Multidisciplinary Capstone Programs and Marshall’s Materials & Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.
      While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.
      NASA Marshall engineers and scientists, along with their collaborators from Ohio State University, monitor laser beam welding in a vacuum chamber during a Boeing 727 parabolic flight. From left, Andrew O’Connor, Marshall materials scientist and NASA technical lead for the project; Louise Littles, Marshall materials scientist; and Aaron Brimmer, OSU graduate student.Tasha Dixon/Zero-G “During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign,” said Will McAuley, an Ohio State welding engineering student.
      Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA’s Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.
      The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.
      The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.
      “We’re really excited about laser beam welding because it gives us the flexibility to operate in different environments,” O’Connor said.
      There has been a resurgence of interest in welding as we look for innovative ways to put larger structures on the surface of the Moon and other planets.
      Andrew O’Connor
      Marshall Space Flight Center materials scientist
      This effort is sponsored by NASA Marshall’s Research and Development funds, the agency’s Science Mission Directorate Biological and Physical Sciences Division of the agency’s Science Mission Directorate, and NASA’s Space Technology Mission Directorate, including NASA Flight Opportunities.
      For more information about NASA’s Marshall Space Flight Center, visit:
      https://www.nasa.gov/marshall
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Alabama
      256.544.0034
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 Related Terms
      Marshall Space Flight Center Explore More
      5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 3 days ago 23 min read The Marshall Star for October 30, 2024
      Article 1 week ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:06:03 From 14 to 18 October 2024, the International Astronautical Congress (IAC) returned for its 75th edition, and ESA took on a front-centre role, from presenting Europe’s future space ambitions and showcasing major steps towards them, to addressing global challenges alongside other world space leaders. Held at the Milano Congress Centre (MiCo), the largest conference venue in Europe, the event brought together more than 11 000 experts from industry, research institutions, and space agencies worldwide. The first four days featured a comprehensive programme of events and presentations for professionals and stakeholders, while the final day was open to the public.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Skydweller Aero solar-powered, autonomous aircraft flies above the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center during a September 2024 test operation. Skydweller Aero has an ongoing airspace agreement with NASA Stennis to conduct test flights of its aircraft in the area.Skydweller Aero NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a key step towards achieving a strategic center goal.
      The Reimbursable Space Act agreement marks the first between NASA Stennis and a commercial company to utilize the south Mississippi center’s unique capabilities to support testing and operation of uncrewed systems.
      “There are few locations like NASA Stennis that offer a secure location, restricted airspace and the infrastructure to support testing and operation of various uncrewed systems,” said NASA Stennis Director John Bailey. “Range operations is a critical area of focus as we adapt to the changing aerospace and technology landscape to grow into the future.”
      NASA Stennis and Skydweller Aero finalized the agreement in late August, paving the way for the company to begin area test flights of its autonomous, uncrewed solar-powered aircraft, which features a wingspan greater than a 747 jetliner and is designed for long-duration flights. The company announced Oct. 1 it had completed an initial test flight campaign of the aircraft, including two test excursions totaling 16 and 22.5 hours.
      NASA Stennis and Skydweller Aero began talks in the summer of 2023 when the company expressed interest in utilizing NASA Stennis airspace for its all-carbon fiber aircraft. The NASA Stennis area fits the company’s needs well since it provides ready access from Stennis International Airport to the Gulf of Mexico area. NASA Stennis airspace also provides a level of privacy for aircraft testing and operation.
      “Access to the restricted airspace above NASA Stennis has been tremendously helpful to our uncrewed, autonomous flight operations,” said Barry Matsumori, president and chief operating officer of Skydweller Aero. “The opportunity to use the controlled environment above Stennis helps accelerate our efforts, allowing us to transition the aircraft in and out of civil airspace, while demonstrating its reliability and unblemished safety record to the FAA.”
      Companies must be conducting public aircraft operations to use any restricted airspace. In this instance, Skydweller Aero is flying its aircraft in association with the U.S. Department of Defense, allowing for the Reimbursable Space Act agreement with NASA Stennis.
      The agreement provides the company Federal Aviation Administration (FAA) authorization for future test flights in designated areas of the NASA Stennis buffer zone. It also represents a key step in the center’s effort to grow its range operations presence.
      “This really opens the door for others to come here,” said Jason Peterson, NASA Stennis range officer. “There are requirements that must be met, but for those who meet them, NASA Stennis is an ideal location for test and flight operations.”
      The FAA established restricted airspace at NASA Stennis in 1966 and approved its expansion in 2016. The expansion was necessary to conduct propulsion testing safely, accommodate U.S. Department of Defense missions, and support unmanned aerial systems activities.
      Restricted airspace at NASA Stennis allows qualifying organizations to conduct various uncrewed flight activities. NASA Stennis personnel provide scheduling and range operation support, including reviews and evaluations to ensure safe flight operations. Processes are in place to ensure communication between aircraft operators, FAA air traffic controllers, and range safety personnel.
      Peterson said he hopes the agreement with Skydweller Aero will clear the way for future collaborations as NASA Stennis continues to expand its customer-based operations. For instance, although Skydweller Aero is not located onsite, NASA Stennis is able to support ground operations for a variety of unmanned aircraft system takeoffs and landings.
      Beyond that, the center also hopes to expand its operational capabilities to include marine and ground activities. In addition to a large geographic footprint, the center features a secure 7.5-mile waterway canal system for testing unmanned underwater or surface vehicles.
      For information about range operations at NASA’s Stennis Space Center, visit:
      Range and Airspace Operations – NASA
      Share
      Details
      Last Updated Oct 23, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
      Range and Airspace Operations
      Propulsion Test Engineering
      NASA Stennis Front Door
      Doing Business with NASA Stennis
      View the full article
  • Check out these Videos

×
×
  • Create New...