Jump to content

Ariane 6, Vega-C, microlaunchers: ESA looks to full range of launch options for European institutional missions


Recommended Posts

Artist's view of Ariane 6 and Vega-C

ESA Director General Josef Aschbacher today underscored the Agency’s determination to ensure that ESA’s work in space is not derailed by the tragic events in Ukraine. Mr Aschbacher stresses that work continues to assess the impact on each ongoing programme, including on missions affected by Roscosmos' withdrawal of Soyuz launch operations from Europe’s Spaceport in French Guiana.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA to Launch Innovative Solar Coronagraph to Space Station
      NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution.
      Launching in November 2024 aboard SpaceX’s 31st commercial resupply services mission, CODEX will be robotically installed on the exterior of the space station. As a solar coronagraph, CODEX will block out the bright light from the Sun’s surface to better see details in the Sun’s outer atmosphere, or corona.
      In this animation, the CODEX instrument can be seen mounted on the exterior of the International Space Station. For more CODEX imagery, visit https://svs.gsfc.nasa.gov/14647. CODEX Team/NASA “The CODEX instrument is a new generation solar coronagraph,” said Jeffrey Newmark, principal investigator for the instrument and scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has a dual use — it’s both a technology demonstration and will conduct science.”
      This coronagraph is different from prior coronagraphs that NASA has used because it has special filters that can provide details of the temperature and speed of the solar wind. Typically, a solar coronagraph captures images of the density of the plasma flowing away from the Sun. By combining the temperature and speed of the solar wind with the traditional density measurement, CODEX can give scientists a fuller picture of the wind itself.
      “This isn’t just a snapshot,” said Nicholeen Viall, co-investigator of CODEX and heliophysicist at NASA Goddard. “You’re going to get to see the evolution of structures in the solar wind, from when they form from the Sun’s corona until they flow outwards and become the solar wind.”
      The CODEX instrument will give scientists more information to understand what heats the solar wind to around 1.8 million degrees Fahrenheit — around 175 times hotter than the Sun’s surface — and sends it streaming out from the Sun at almost a million miles per hour.
      Team members for CODEX pose with the instrument in a clean facility during initial integration of the coronagraph with the pointing system. CODEX Team/NASA This launch is just the latest step in a long history for the instrument. In the early 2000s and in August 2017, NASA scientists ran ground-based experiments similar to CODEX during total solar eclipses. A coronagraph mimics what happens during a total solar eclipse, so this naturally occurring phenomena provided a good opportunity to test instruments that measure the temperature and speed of the solar wind.
      In 2019, NASA scientists launched the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) experiment. A balloon the size of a football field carried the CODEX prototype 22 miles above Earth’s surface, where the atmosphere is much thinner and the sky is dimmer than it is from the ground, enabling better observations. However, this region of Earth’s atmosphere is still brighter than outer space itself.
      “We saw enough from BITSE to see that the technique worked, but not enough to achieve the long-term science objectives,” said Newmark.
      Now, by installing CODEX on the space station, scientists will be able to view the Sun’s corona without fighting the brightness of Earth’s atmosphere. This is also a beneficial time for the instrument to launch because the Sun has reached its solar maximum phase, a period of high activity during its 11-year cycle.
      “The types of solar wind that we get during solar maximum are different than some of the types of wind we get during solar minimum,” said Viall. “There are different coronal structures during this time that lead to different types of solar wind.”
      The CODEX coronagraph is shown during optical alignment and assembly. CODEX Team//NASA This coronagraph will be looking at two types of solar wind. In one, the solar wind travels directly outward from our star, pulling the magnetic field from the Sun into the heliosphere, the bubble that surrounds our solar system. The other type of solar wind forms from magnetic field lines that are initially closed, like a loop, but then open up.
      These closed field lines contain hot, dense plasma. When the loops open, this hot plasma gets propelled into the solar wind. While these “blobs” of plasma are present throughout all of the solar cycle, scientists expect their location to change because of the magnetic complexity of the corona during solar maximum. The CODEX instrument is designed to see how hot these blobs are for the first time.
      The coronagraph will also build upon research from ongoing space missions, such as the joint ESA (European Space Agency) and NASA mission Solar Orbiter, which also carries a coronagraph, and NASA’s Parker Solar Probe. For example, CODEX will look at the solar wind much closer to the solar surface, while Parker Solar Probe samples it a little farther out. Launching in 2025, NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will make 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind.
      By comparing these findings, scientists can better understand how the solar wind is formed and how the solar wind changes as it travels farther from the Sun. This research advances our understanding of space weather, the conditions in space that may interact with Earth and spacecraft.
      “Just like understanding hurricanes, you want to understand the atmosphere the storm is flowing through,” said Newmark. “CODEX’s observations will contribute to our understanding of the region that space weather travels through, helping improve predictions.”
      The CODEX instrument is a collaboration between NASA’s Goddard Space Flight Center and the Korea Astronomy and Space Science Institute with additional contribution from Italy’s National Institute for Astrophysics.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 30, 2024 Related Terms
      Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Heliophysics Division International Space Station (ISS) Science Mission Directorate Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing


      Article


      1 day ago
      2 min read New Project Invites You To Do Martian Cloud Science with NASA


      Article


      1 day ago
      2 min read Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      The SpaceX Dragon spacecraft, carried on the company’s Falcon 9 rocket, will launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 31st commercial resupply services mission to the International Space Station.Credit: SpaceX NASA and SpaceX are targeting 9:29 p.m. EST, Monday, Nov. 4, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 31st SpaceX commercial resupply services mission to the orbital laboratory for the agency.
      Filled with nearly 6,000 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live launch coverage will begin at 9:10 p.m. on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA’s coverage of arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Dragon will dock autonomously to the forward port of the space station’s Harmony module.

      In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity, and an investigation that studies how space impacts different materials.
      Media interested in speaking to a science subject matter expert should contact Leah Cheshier at: leah.d.cheshier@nasa.gov.

      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Monday, Nov. 4:
      3:30 p.m. – Prelaunch media teleconference (no earlier than one hour after completion of the Launch Readiness Review) with the following participants:
      Bill Spetch, operations and integration manager, NASA’s International Space Station Program Meghan Everett, deputy chief scientist, NASA’s International Space Station Program Jared Metter, director, flight reliability, SpaceX
      Media who wish to participate by phone must request dial-in information by 5 p.m. Friday, Nov. 1, by emailing Kennedy’s newsroom at: ksc-media-accreditat@mail.nasa.gov.
      Audio of the teleconference will stream live on the agency’s website.


      9:10 p.m. – Launch coverage begins on NASA+ and the agency’s website.

      9:29 p.m. – Launch
      Tuesday, Nov. 5:
      8:45 a.m. – Arrival coverage begins on NASA+ and the agency’s website.
      10:15 a.m. – Docking
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 9:10 p.m., Nov. 4, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, ISS_Research, @ISS National Lab
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-31
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Oct 30, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SpaceX Commercial Resupply International Space Station (ISS) ISS Research Kennedy Space Center View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This enhanced-color mosaic was taken on Sept. 27 by the Perseverance rover while climbing the western wall of Jezero Crater. Many of the landmarks visited by the rover during its 3½-year exploration of Mars can be seen.NASA/JPL-Caltech/ASU/MSSS On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead.  
      NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. During the climb, the rover snapped not only a sweeping view of Jezero Crater’s interior, but also imagery of the tracks it left after some wheel slippage along the way. 
      An annotated version of the mosaic captured by Perseverance highlights nearly 50 labeled points of interest across Jezero Crater, including the rover’s landing site. The 44 images that make up the mosaic were taken Sept. 27.NASA/JPL-Caltech/ASU/MSSS Stitched together from 44 frames acquired on Sept. 27, the 1,282nd Martian day of Perseverance’s mission, the image mosaic features many landmarks and Martian firsts that have made the rover’s 3½-year exploration of Jezero so memorable, including the rover’s landing site, the spot where it first found sedimentary rocks, the location of the first sample depot on another planet, and the final airfield for NASA’s Ingenuity Mars Helicopter. The rover captured the view near a location the team calls “Faraway Rock,” at about the halfway point in its climb up the crater wall.  
      “The image not only shows our past and present, but also shows the biggest challenge to getting where we want to be in the future,” said Perseverance’s deputy project manager, Rick Welch of NASA’s Jet Propulsion Laboratory in Southern California. “If you look at the right side of the mosaic, you begin to get an idea what we’re dealing with. Mars didn’t want to make it easy for anyone to get to the top of this ridge.”
      Visible on the right side of the mosaic is a slope of about 20 degrees. While Perseverance has climbed 20-degree inclines before (both NASA’s Curiosity and Opportunity rovers had crested hills at least 10 degrees steeper), this is the first time it’s traveled that steep a grade on such a slippery surface.
      This animated orbital-map view shows the route NASA’s Perseverance Mars rover has taken since its February 2021 landing at Jezero Crater to July 2024, when it took its “Cheyava Falls” sample. As of October 2024, the rover has driven over 30 kilometers (18.65 miles), and has collected 24 samples of rock and regolith as well as one air sample. NASA/JPL-Caltech Soft, Fluffy
      During much of the climb, the rover has been driving over loosely packed dust and sand with a thin, brittle crust. On several days, Perseverance covered only about 50% of the distance it would have on a less slippery surface, and on one occasion, it covered just 20% of the planned route.
      “Mars rovers have driven over steeper terrain, and they’ve driven over more slippery terrain, but this is the first time one had to handle both — and on this scale,” said JPL’s Camden Miller, who was a rover planner, or “driver,” for Curiosity and now serves the same role on the Perseverance mission. “For every two steps forward Perseverance takes, we were taking at least one step back. The rover planners saw this was trending toward a long, hard slog, so we got together to think up some options.”
      On Oct. 3, they sent commands for Perseverance to test strategies to reduce slippage. First, they had it drive backward up the slope (testing on Earth has shown that under certain conditions the rover’s “rocker-bogie” suspension system maintains better traction during backward driving). Then they tried cross-slope driving (switchbacking) and driving closer to the northern edge of “Summerland Trail,” the name the mission has given to the rover’s route up the crater rim.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Perseverance drives first backward then forward as it negotiates some slippery terrain found along a route up to the rim of Jezero Crater on Oct. 15. The Mars rover used one of its navigation cameras to capture the 31 images that make up this short video.NASA/JPL-Caltech Data from those efforts showed that while all three approaches enhanced traction, sticking close to the slope’s northern edge proved the most beneficial. The rover planners believe the presence of larger rocks closer to the surface made the difference.
      “That’s the plan right now, but we may have to change things up the road,” said Miller. “No Mars rover mission has tried to climb up a mountain this big this fast. The science team wants to get to the top of the crater rim as soon as possible because of the scientific opportunities up there. It’s up to us rover planners to figure out a way to get them there.”
      Tube Status
      In a few weeks, Perseverance is expected to crest the crater rim at a location the science team calls “Lookout Hill.” From there, it will drive about another quarter-mile (450 meters) to “Witch Hazel Hill.” Orbital data shows that Witch Hazel Hill contains light-toned, layered bedrock. The team is looking forward to comparing this new site to “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock.
      Tracks shown in this image indicate the slipperiness of the terrain Perseverance has encountered during its climb up the rim of Jezero Crater. The image was taken by one of rover’s navigation cameras on Oct. 11. NASA/JPL-Caltech The rover landed on Mars carrying 43 tubes for collecting samples from the Martian surface. So far, Perseverance has sealed and cached 24 samples of rock and regolith (broken rock and dust), plus one atmospheric sample and three witness tubes. Early in the mission’s development, NASA set the requirement for the rover to be capable of caching at least 31 samples of rock, regolith, and witness tubes over the course of Perseverance’s mission at Jezero. The project added 12 tubes, bringing the total to 43. The extras were included in anticipation of the challenging conditions found at Mars that could result in some tubes not functioning as designed.
      NASA decidedto retire two of the spare empty tubes because accessing them would pose a risk to the rover’s small internal robotic sample-handling arm needed for the task: A wire harness connected to the arm could catch on a fastener on the rover’s frame when reaching for the two empty sample tubes. 
      With those spares now retired, Perseverance currently has 11 empty tubes for sampling rock and two empty witness tubes.
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      2024-144
      Share
      Details
      Last Updated Oct 28, 2024 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
      6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 2 hours ago 4 min read Could Life Exist Below Mars Ice? NASA Study Proposes Possibilities
      Article 2 weeks ago 4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: ESA Astronaut Reserve training kicks off at EAC View the full article
    • By NASA
      Learn Home Kites in the Classroom:… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions
      The NASA Science Activation program’s AEROKATS and ROVER Education Network (AREN), led by Wayne Regional Educational Service Agency (RESA) in Wayne County, MI, provides learners with hands-on opportunities to engage with science instruments & NASA technologies and practices in authentic, experiential learning environments. On July 25, 2024, the AREN team held a four-day virtual workshop: “Using Kites and Sensors to Collect Local Data for Science with the NASA AREN Project”. During this workshop, the team welcomed 35 K-12 educators and Science, Technology, Education, & Mathematics (STEM) enthusiasts from across the country to learn about the AREN project and how to safely conduct missions to gather remote sensing data in their classrooms.
      Teachers were trained to use an AeroPod, an aerodynamically stabilized platform suspended from a kite line, in order to collect aerial imagery and introduce their students to topics like resolution, pixels, temporal and seasonal changes to landscape, and image classification of land cover types. Educators were also familiarized with safe operation practices borrowed from broader NASA mission procedures to ensure students in the field can enjoy experiential education safely. The AREN team will also meet with workshop participants during follow-up sessions to highlight next steps and new instrumentation that can be used to gather different data, help broaden the educators depth of understanding, and increase successful implementation in the classroom.
      “This session has been very helpful and informative of the program and the possible investigations that we can conduct. The fact that it can connect hands on experiments, data analysis, and draw conclusions from the process is going to be a fantastic learning experience.” ~AREN Workshop Participant
      The AREN project continually strives to provide low cost, user-friendly opportunities to engage in hands-on experiential education and increase scientific literacy. The versatility of the NASA patented AeroPod platform allows learners to investigate scientific questions that are meaningful to their community and local environment. Learn more about AREN and how to implement AREN technologies in the classroom: https://science.nasa.gov/sciact-team/resa/
      AREN is supported by NASA under NASA Science Mission Directorate Science Education Cooperative Agreement Notice (CAN) Solicitation NNH15ZDA004C Award Number NNX16AB95A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

      Kite with Aeropod for Collecting Data
      Share








      Details
      Last Updated Oct 25, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Science Activation Explore More
      3 min read Autumn Leaves – Call for Volunteers


      Article


      20 mins ago
      2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms


      Article


      1 day ago
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...