Members Can Post Anonymously On This Site
Juice’s journey and Jupiter system tour
-
Similar Topics
-
By NASA
In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
Award: $45,000 in total prizes
Open Date: November 14, 2024
Close Date: January 23, 2025
For more information, visit: https://www.herox.com/NASASouthPoleSafety
View the full article
-
By NASA
Bone cellsNASA Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms.
But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
“Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
jsc2022e083018 (10/26/2022) — A preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation. Image courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
“It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen
Malcolm o'malley
Former NASA Intern
“I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
Artist conception of a future Artemis Base Camp on the lunar surface NASA When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity.
O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.
View the full article
-
By Space Force
The U.S. Space Force and Canadian Armed Forces have kicked off an Operations and Sustainment Phase which will provide Canada with six years of access to the Space Force’s Mobile User Objective System Satellite System.
View the full article
-
By NASA
1 Min Read Sinister Solar System
A witch appears to be screaming in space in this image from NASA’s Wide-Field Infrared Survey Explorer (WISE). Credits:
NASA/WISE Our universe is full of mysterious sights. Explore some of our most frightful finds from past Halloweens.
Keep Exploring Discover More Topics From NASA
Solar System Exploration
Europa Clipper
Europa Clipper will search for signs of potential habitability on Jupiter’s icy ocean moon Europa.
Europa
Jupiter
About the Author
NASA Science Editorial Team
Share
Details
Last Updated Oct 24, 2024 Related Terms
The Solar System Explore More
3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
Article
1 day ago
5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets.
Article
1 week ago
4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Learn Home Europa Trek: NASA Offers a New… Europa Clipper Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
NASA’s Europa Clipper mission is on its way to explore a moon of Jupiter that researchers believe may be one of the best places in the Solar System to search for life beyond Earth. While the spacecraft makes its more-than-five year journey to Europa, scientists, students, teachers, and the public can tour and explore the landforms of Europa with newly-released enhancements to NASA’s Europa Trek web portal.
One of the largest of Jupiter’s nearly 100 recognized moons, Europa is covered with a global ice cap. But beneath that crust of ice, researchers have found an ocean of liquid water, estimated to have about twice the volume of all of Earth’s oceans combined. This vast amount of liquid water is of particular interest to astrobiologists, scientists studying the origin, evolution, and distribution of life in the Universe. Though Europa’s ocean remains hidden beneath its global crust of ice, we can get important clues about its nature by studying the remarkable landforms of Europa’s icy surface.
To accompany the launch of Europa Clipper, NASA’s Solar System Treks Project released exciting new enhancements to its online Europa Trek portal on September 30, 2024. The new additions to Europa Trek allow users to interactively fly over and explore high-resolution imagery of Europa’s surface from the Voyager, Galileo, and Juno missions. Users can also take a new guided tour of Europa’s amazing landforms, with commentary developed by a collaboration between NASA’s Astrobiology Science Communication Guild and NASA’s Solar System Exploration Research Virtual Institute. The tour and its commentary introduce virtual explorers to the geology and possible biological significance of the diverse features of Europa’s surface.
“This is really fun. It’s cool how you can zoom into the high resolution data. I’ll spread the word about using this!” – Bob Pappalardo, Europa Clipper Project Scientist
The new tour and capabilities of Europa Trek were featured at the Europa Clipper public launch program at the Kennedy Space Center Visitor Center on October 6,2024, in advance of the October 14 launch of the mission. As part of the public program conducted by NASA’s Planetary Mission Program Office, the Europa Trek exhibit allowed hundreds of visitors to try their hands at flying over Europa and visualizing its exotic terrain.
NASA’s Solar System Treks is an infrastructure project within NASA’s Science Activation Team. Their online portals are used for mission planning, planetary science research, and Science, Technology, Engineering, & Mathematics (STEM) education. NASA’s Astrobiology Science Communication Guild is an international, community-based network of astrobiologists who engage in science communication with diverse audiences and learners. Watch for future collaborations between Solar System Treks and the Astrobiology Science Communication Guild at more locations across the Solar System!
Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
A stop along the guided tour of Europa landforms Share
Details
Last Updated Oct 23, 2024 Editor NASA Science Editorial Team Related Terms
Europa Europa Clipper Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets.
Article
6 days ago
6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
Article
2 weeks ago
4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.