Jump to content

Bright unknown object flying over Ukraine


USH

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The tail of comet C/2023 A3 Tsuchinshan-ATLAS spanned the view of the Solar and Heliospheric Observatory (SOHO) on Oct. 10, 2024. ESA/NASA The ESA (European Space Agency) and NASA Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass through its field of view during the spacecraft’s nearly 29-year career.
      The bright comet is C/2023 A3 Tsuchinshan-ATLAS, which has been garnering a lot of attention from skywatchers recently, displaying a long, dusty tail in pre-dawn skies throughout late September and early October. (Comet McNaught, viewed in 2007, holds the record as the brightest comet SOHO has seen.)
      Between Oct. 7 and 11, the comet blazed through the view of SOHO’s LASCO (Large Angle and Spectrometric Coronagraph Experiment) instrument, which uses a disk to block out the bright light of the Sun so it’s easier to see details and objects near the Sun. This image, taken by SOHO on Oct. 10, 2024, shows the comet and its bright tail streaming from the upper left to the right. Mercury appears as a bright dot on the left.
      After crossing through SOHO’s field of view, the comet will begin putting on an evening show for skywatchers around the world just after sunset starting Saturday, Oct. 12. Each day throughout October, the comet will gradually rise higher and higher in the western sky as it moves farther away from the Sun. But as it does, it will become fainter and fainter. Eagle-eyed skywatchers may be able to spot it with the naked eye for a few days, but after that, observers will likely need binoculars or a telescope to see it as it grows fainter.
      Even if you are unable to spot this comet yourself, you can help SOHO search for others. Scientists and members of the general public have discovered more than 5,000 comets in SOHO imagery, and you can help find even more by visiting the Sungrazer Project.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 11, 2024 Related Terms
      Comets Goddard Space Flight Center Heliophysics Heliophysics Division Skywatching SOHO (Solar and Heliospheric Observatory) The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      8 hours ago
      2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation


      Article


      22 hours ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By USH
      Reports of alien abductions first became widespread during the 1960s and 70s. Alleged abductees frequently described undergoing experimental procedures performed by extraterrestrial beings. Some even claimed that these aliens had inserted unknown objects into their bodies. 

      In many cases, these so-called "alien implants" are metallic and have been reported to emit radio frequency waves. Often, they are found attached to nerve endings within the body. 
      One of the most prominent figures in this field of research was Dr. Roger Leir, who passed away on March 14, 2014. Along with his surgical team, Dr. Leir performed 17 surgeries on individuals who claimed to have been abducted by aliens, removing 13 distinct objects suspected to be alien implants.

      These objects were subjected to scientific analysis by prestigious laboratories, including Los Alamos National Labs, New Mexico Tech, and the University of California at San Diego. The findings have been puzzling, with some comparisons made to meteorite samples, and isotopic ratios in some tests suggesting materials not of Earthly origin.
      One such case is that of Terry Lovelace, a former Air Force medic, who kept a disturbing secret for 40 years. In 2012, a routine x-ray revealed a small square object about the size of a fingernail which was buried deep in Terry's right leg the doctor had never see anything like it. 
      Then Terry suddenly remembered the terrifying experience he had tried to forget - an event during a camping trip at Devil's Den State Park that he had never spoken of, knowing no one would believe him without proof. Yet the evidence had always been there: a strange metal object embedded in his leg, something that was not man-made. 
      In 1977, Terry and a friend had an extraordinary encounter at Devil's Den State Park, where they witnessed a massive triangular craft. This experience resulted in missing time and unexplained injuries. Years later, Terry was faced with a difficult choice: reveal his story of alien contact or remain silent. His decision led him into conflict with powerful forces and uncovered a conspiracy that extended beyond our world.
      While some remain skeptical, believing these implants are man-made and part of a secretive human agenda, Dr. Leir’s work, along with Terry Lovelace's experience at Devil’s Den and the mysterious object found in his leg, suggests that 'alien' implants may not be mere fiction.
        View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4307-4308: Bright Rocks Catch Our Eyes
      NASA’s Mars rover Curiosity captured this image while exploring a rock-strewn channel of Gediz Vallis on the Red Planet. Mission scientists were particularly intrigued to investigate several bright-toned rocks (at the middle-right, bottom-right and bottom-center of the image), similar to rocks that Curiosity had encountered previously that were unexpectedly rich in sulfur. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4306 — Martian day 4,306 of the Mars Science Laboratory Mission — on Sept. 16, 2024 at 12:47:18 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 16, 2024
      We made good progress through Gediz Vallis in the weekend drive, landing in a segment of the channel containing a mix of loose rubble and other channel-filling debris. Amongst the jumbled scene, though, particular objects of interest caught our eye: bright rocks. In past workspaces in Gediz Vallis, similar bright rocks have been associated with very high to almost pure sulfur contents. As all good geologists know, however, color is not diagnostic, so we cannot assume these are the same as sulfur-rich rocks we have encountered previously. The only way to know is to collect data, and that was a significant focus of today’s plan.
      We planned multiple mosaics across the examples of bright rocks visible in the image above. Mastcam and ChemCam RMI will cover “Bright Dot Lake” and “Sheep Creek” both in the right midfield of the image. Mastcam imaged the example in the bottom right corner of the image at “Marble Falls,” and ChemCam LIBS targeted one of the small bright fragments along the bottom of the image at “Blanc Lake.” There was also a small bit of bright material in the workspace, but unfortunately, it was not reachable by APXS. APXS analyzed a spot near the bright material, at target “Frog Lake,” and MAHLI was able to tack on a few extra images around that target that should capture the bright material. MAHLI also imaged a vuggy target in the workspace at “Grasshopper Flat.”  The wider context of the channel was also of interest for imaging, so we captured the full expanse of the channel with one Mastcam mosaic, and focused another on mounds distributed through the channel at target “Copper Creek.”
      Even with all this rock imaging, we did not miss a beat with our environmental monitoring. We planned regular RAD, REMS, and DAN measurements, mid and late day atmospheric dust observations, a cloud movie, and dust devil imaging. 
      Our drive is planned to take us up onto one of the ridges in the channel. Will we find more bright rocks there? Or something new and unexpected that was delivered down Gediz Vallis by some past Martian flood or debris flow? Only the channel knows!
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Blogs Explore More
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      22 hours ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      4 days ago
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA, ESA/Matthias Maurer An astronaut aboard the International Space Station snapped this picture of the Moon as the station orbited 265 miles above the U.S. state of Minnesota on Dec. 17, 2021.
      Astronauts aboard the orbital lab take images using handheld digital cameras, usually through windows in the station’s cupola, for Crew Earth Observations. Crew members have produced hundreds of thousands of images of the Moon and Earth’s land, oceans, and atmosphere.
      On Saturday, Sept. 14, 2024, International Observe the Moon Night, everyone on Earth is invited to learn about lunar science, participate in celestial observations, and honor cultural and personal connection to the Moon. Find an event to join in the celebration.
      Image credit: NASA, ESA/Matthias Maurer
      View the full article
    • By NASA
      4 Min Read NASA Seeks Input for Astrobee Free-flying Space Robots
      iss069e010815 (May 16, 2023) — UAE (United Arab Emirates) astronaut and Expedition 69 Flight Engineer Sultan Alneyadi observes a free-flying Astrobee robotic assistant during the testing of its operations for an upcoming student competition to control the robotic devices. Credits: NASA NASA is seeking input from American companies for the operation and use of a system of free-flying robots aboard the International Space Station as the agency continues to foster scientific, educational, and technological developments in low Earth orbit for the benefit of all.
      The colorful, cube-shaped robots – named “Bumble,” “Honey,” and “Queen” – are part of the Astrobee system helping astronauts and researchers perform technology demonstrations, scientific research, and STEM (science, technology, engineering and mathematics) activities in the unique environment of space since 2018.
      “Dozens of institutions collaborate with NASA to use the Astrobee system to test new hardware and software technologies,” said Jose Benavides, project manager for the Astrobee facilities at NASA’s Ames Research Center in California’s Silicon Valley, where the system was designed and built. “I’m excited to hear how respondents think Astrobee can continue to advance robotics in space.”
      NASA issued a Request for Information to inform strategic planning, inviting industry to provide information to help shape the maturation of robotics in zero gravity to achieve the greatest scientific and exploration value. Responses are due Sept. 27, 2024. To learn more about the Request for Information, visit:
      https://sam.gov/opp/7893fe01e7bf4ae69029b5d8915e62c5/view
      iss065e389375 (9/20/2021) — NASA astronaut Shane Kimbrough poses with the Astrobee robotic free-flyers in support of the Kibo Robot Programming Challenge (Robo-Pro Challenge). The Kibo-RPC, allows students to create programs to control Astrobee, a free-flying robot aboard the International Space Station (ISS). The battery-powered robots in the Astrobee system fly around the space station’s modules using electric fans for propulsion and “see” their surroundings using lights, cameras, and other sensors. They have interchangeable “arms” that provide ways for the robots to hold objects or keep steady for tasks requiring stability, and magnets to ensure they stay securely docked when recharging.
      Working autonomously, or via remote control by astronauts, flight controllers, or researchers on the ground, the robots can be used to off-load time-consuming tasks. For instance, the robots can work independently or collaboratively to assist with routine chores like space station monitoring, maintenance, inventory, experiment documentation, or moving cargo throughout the station. This allows astronauts more time to tackle complex work that only humans can perform.
      Astrobee’s versatile design has allowed thousands of hours of testing on hundreds of microgravity experiments. Many have involved astronauts, but the facility also is regularly used by researchers and student teams across the world competing for the opportunity to run their programs on the robots in space.
      Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space"
      Jonathan Barlow
      Astrobee Project Manager
      For example, NASA’s ISAAC (Integrated System for Autonomous and Adaptive Caretaking) project, used the Astrobees to study how robots could assist spacecraft, vehicle systems, and ground operators. The technology could help NASA use robot caretakers for critical spacecraft in the agency’s Moon-to-Mars plans, including the Gateway lunar space station and Mars transit habitat vehicle, especially during the months-long periods when these spacecraft will be uncrewed.

      “Our ISAAC work has proved out its technology in a high-fidelity space environment because of the ready availability of the capable Astrobee robots,” said Trey Smith, project manager for ISAAC at NASA Ames.

      The project demonstrated using multiple Astrobees to autonomously collect the first robot-generated survey of a spacecraft interior. Other ISAAC firsts include the first use of a robot to locate the source of a sound in space, in collaboration with the Bosch USA SoundSee payload team, and the first time robots navigated between modules of a space station. Future robots could use ISAAC technology to transfer cargo between space vehicles or respond to a time-critical fault like a leak due to a micrometeoroid impact, all without human assistance.

      “With Astrobee, we’ve learned about flying multiple robots in space alongside humans,” said Jonathan Barlow, project manager for Astrobee at NASA Ames. “Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space.”


      The Astrobee Facility, operated out of NASA’s Ames Research Center, provides a free-flying robotic system for space station research and STEM outreach.  NASA’s Game Changing Development Program, part of the agency’s Space Technology Mission Directorate, funded Astrobee. NASA’s International Space Station Utilization Office provides ongoing funding.
      iss071e464314 (Aug. 12, 2024) — NASA astronaut and Expedition 71 Flight Engineer Jeanette Epps monitors a pair of Astrobee robotic free-flying assistants as they demonstrate autonomous docking maneuvers inside the International Space Station’s Kibo laboratory module. The cube-shaped, toaster-sized devices were operating with a connecting interface system, called CLINGERS with an embedded navigation sensor, that may benefit construction in space.View the full article
  • Check out these Videos

×
×
  • Create New...