Jump to content

Hubble's Celestial Snow Globe


HubbleSite

Recommended Posts

low_STSCI-H-p1737a-k-1340x520.png

It's beginning to look a lot like the holiday season in this NASA Hubble Space Telescope image of a blizzard of stars, which resembles a swirling snowstorm in a snow globe. The stars are residents of the globular star cluster Messier 79, or M79, located 41,000 light-years from Earth, in the constellation Lepus. The cluster is also known as NGC 1904.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Linette Boisvert turned a childhood love of snow into a career as a sea ice scientist studying climate change.
      Name: Linette Boisvert
      Title: Assistant Lab Chief, Cryospheric Sciences Branch, and Deputy Project Scientist for the Aqua Satellite
      Formal Job Classification: Sea Ice Scientist
      Organization: Cryospheric Science Branch, Science Directorate (Code 615)
      “When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives,” said Linette. “One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist.”Photo credit: NASA/Kyle Krabill What do you do and what is most interesting about your role here at Goddard? 
      As a sea ice scientist, I study interactions between the sea ice and the atmosphere. I’m interested in how the changing sea ice conditions and loss of Arctic ice are affecting the atmospheric conditions in the Artic. 
      Why did you become a sea ice scientist? What is your educational background?  
      I grew up in Maryland. When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives. One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist. This also coincided with the Arctic sea ice minimum in 2007, at the time, a record low.
      In 2008, I got a B.S. in environmental science with a minor in math from the University of Maryland, Baltimore County (UMBC). I received my master’s and, in 2013, got a Ph.D. in atmospheric and oceanic sciences from the University of Maryland, College Park.
      How did you come to Goddard?
      My doctorate advisor worked at Goddard. In 2009, he brought me into Goddard’s lab to do my Ph.D. research. I became a post-doctorate in 2013, an assistant research scientist in 2016 (employed by UMD/ESSIC) and, in 2018, a civil servant.
      Dr. Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo credit: NASA/Jeremy Harbeck What is the most interesting field work you do as the assistant lab chief of Goddard’s Cryospheric Sciences Branch?
      From 2018 to 2020, I was the deputy project scientist for NASA’s largest and longest running airborne campaign, Operation IceBridge. This involved flying aircraft with scientific instruments over both land ice and sea ice in the Arctic and Antarctic. Every spring, we would set up a base camp in a U.S. Air Force base in Greenland and fly over parts of the sea ice over Greenland and the Arctic, and in the fall we would base out of places like Punta Arenas, Chile, and Hobart, Australia, to fly over the Antarctic. 
      We would fly low, at 1,500 feet above the surface. It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.
      Being based out of Greenland is very remote. Everything is white. Everything looks like it is closer than it is. You do not have a point of reference for any perspective. It is very quiet. There is no background ambient noise. You do not hear bugs, birds, or cars, just quiet. 
      Our team was about 20 people. Other people live at the base. The campaigns lasted six to eight weeks. I was there about three to four weeks each time. Many of the group had been doing these campaigns for a decade. I felt like I had joined a family. In the evenings, we would often cook dinner together and play games. On days we could not fly, we would go on adventures together like visiting a glacier or hiking. We saw musk ox, Arctic fox, Arctic hares, and seals. 
      How did it feel to become the deputy project scientist for the Aqua satellite, which provided most of the data you used for your doctorate and publications?
      In January 2023, I became the deputy project scientist for the Aqua satellite, which launched in 2002. Aqua measures the Earth’s atmospheric temperature, humidity, and trace gases. Most of my doctorate and publications used data from Aqua to look at how the sea ice loss in the Arctic is allowing for excess heat and moisture from the ocean to move into the atmosphere resulting in a warmer and wetter Arctic. 
      I am honored. I feel like I have come full circle. The team welcomed me into the mission and taught me a lot of things. I am grateful to be working with such a brilliant, hardworking team.
      Who is your science hero?
      My father encouraged me to get a doctorate in science. My father has a doctorate in computer science and math. He works at the National Institute of Standards and Technology. I wanted to be like him when I was growing up. I came close, working at NASA, another part of the federal government. My mother, a French pastry chef, always kept me well fed.
      “We would fly low, at 1,500 feet above the surface,” said Linette. “It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.”Photo credit: NASA/John Sonntag My father is very proud of me. He thinks I am more of a superstar than he was at my age, but I do not believe it. My mother is also proud and continues to keep me well fed.
      Who is your Goddard mentor?
      Claire Parkinson, now an emeritus, was the project scientist for Aqua since its inception. When she retired, she encouraged me to apply for the deputy position. She had confidence in me which gave me the confidence to apply for the position. She is still always available to answer any questions. I am very thankful that she has been there for me throughout my career.
      What advice do you give to those you mentor?
      I recently began advising young scientists; one undergraduate student, two graduate students, and one post-doctoral scientist. We meet weekly as a group and have one-on-one meetings when appropriate. They share their progress on their work. Sometimes we practice presentations they are about to give. 
      It is sometimes hard starting out to think that you are smart because Goddard is full of so many smart people. I tell them that they are just as capable when it comes to their research topic. I tell them that they fit in well with the Goddard community. I want to create a comfortable, respectful, and inclusive environment so that they remain in science. 
      What do you do for fun?
      I enjoy running and paddle boarding with my dog Remi, my long-haired dachshund. I enjoy reading. I love to travel and be around friends and family. But I do not enjoy cooking, so I do not bake French pastries like my mom. 
      Where do you see yourself in five years?
      I hope to continue doing research including field work. It would be great if some of my students finished their studies and joined my lab. I hope that I am still making people proud of me. 
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Hard-working. Smart. Inquisitive. Adventurous. Kind. Happy. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 10, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center Ice & Glaciers People of NASA Explore More
      7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 3 hours ago 5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
      Article 1 week ago 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 2 weeks ago View the full article
    • By NASA
      Learn Home GLOBE Alumna and Youth for… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   4 min read
      GLOBE Alumna and Youth for Habitat Program Lead Named Scientist of the Month in Alaska
      As a 16-year old high school graduate, Maggie House decided to leave the military base in Germany where she lived with her family and go to college close to nature in Fairbanks, Alaska. She had lived in many countries and US states and knew she was ready. At the University of Alaska Fairbanks Troth Yeddha’ campus in Fall 2022, Maggie enrolled in a 300-level Watershed Management course, which required all students to implement a Global Learning and Observations to Benefit the Environment (GLOBE) project and poster. Maggie’s project focused on using the GLOBE Observer App to monitor the erosion of nearby Cripple Creek, which had a history of mining and made Fairbanks famous for its gold. She and a classmate wrote a funded mini-grant proposal to study how ice was related to erosion. While not on the frozen creek, Maggie worked as a student employee with the NASA Science Activation Program’s Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) team at the International Arctic Research Center, during which she trained teachers and mentored students at Alaska’s first-ever Student Research Symposium in 2022. Maggie also wrote an article about the symposium, published on the University of Alaska Fairbanks News page: https://www.uaf.edu/news/alaskan-youth-present-research-earth-day-symposium.php
      When the ice melted and the symposium ended, Maggie wanted to study the freshwater habitats of the Creek using GLOBE hydrosphere protocols, so she wrote another proposal. Maggie got a full scholarship and grant funding through Biomedical Learning and Student Training (BLaST), supported by the National Institutes of Health. Her work earned recognition in the US Fish and Wildlife Service story, “Natural Flows Return to Cripple Creek” and honors as the December 2023/January 2024 BLaST Scientist of the Month. The story does not stop there. In May, 2024, Maggie House graduated with a Bachelor of Science degree and received the first-ever GLOBE internship at the Fairbanks Soil and Water Conservation District, where Maggie House leads the summer Youth for Habitat program for middle school students. Today, you can find Maggie in Cripple Creek near Fairbanks, Alaska, teaching students to learn science by doing science.
      “I have a firm belief that the health of our environment is intertwined with the health of humans. I am interested in making science-related issues more understandable, for everyone to be a part of their local community. In my future, I see myself continuing to work towards strengthening the relationship between humans and nature and promoting the conservation of our dependence on one another.” – Maggie House
      Arctic and Earth SIGNs created the conditions for Maggie as an undergraduate student to collect OpenSource GLOBE data that contributed to local solutions, to be awarded funding to pursue actionable research, and to be a leader for educators and future learners. Maggie’s data on ice conditions informed the engineering redesign of the Cripple Creek stream restoration project. Her success in using GLOBE protocols and culturally responsive research methods modeled by Arctic and Earth SIGNs gave her the confidence to write a research proposal and be awarded a full undergraduate research scholarship. Maggie was the first person in the world to monitor aquatic invertebrates in Cripple Creek just three weeks after flow was restored to the creek after 85 years. In Arctic and Earth SIGNs, environmental stewardship is a culminating part of the Learning Framework. Now, Maggie leads the stewardship of salmon habitat in Cripple Creek and mentors middle school youth to pursue STEM fields as a GLOBE trainer and mentor. Maggie’s story matters because one person, with a Science Activation support network and a focus on real-world environmental issues, can make a difference.
      Arctic & Earth SIGNs is supported by NASA under cooperative agreement award number NNX16AC52A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      NASA Science Activation Program participant alumna Maggie House leads youth in GLOBE macroinvertebrate identification at an intergenerational workshop in June, 2024, using a microscope she purchased with her grant funds. Christi Buffington Share








      Details
      Last Updated Jul 30, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Students to Get Involved Science Activation Explore More
      2 min read PLACES team publishes blog post on NextGenScience Blog


      Article


      22 hours ago
      5 min read NASA’s ICON Mission Ends with Several Ionospheric Breakthroughs


      Article


      6 days ago
      8 min read The Earth Observer Editor’s Corner: Summer 2024
      NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Christy Hansen’s journey with NASA spans more than two decades and is marked by roles that have shaped her into a leader in space exploration. Now serving on a six-month rotation as the deputy manager for NASA’s CLDP (Commercial Low Earth Orbit Development Program) at Johnson Space Center in Houston, she brings 25 years of human spaceflight experience and a global perspective on Earth sciences to her role. 

      Prior to her rotation, she served as the Artemis deputy mission manager in the Moon to Mars Program Office at NASA Headquarters in Washington, where she supported Artemis missions and facilitated the integration of science and utilization activities into the mission architecture and planning.  

      Hansen now leverages her vast expertise to advance NASA’s commercial space initiatives and support the agency’s long-term goals. 
      Christy Hansen serves a six-month rotation as deputy manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson Space Center in Houston. NASA/Bill Hrybyk She is no stranger to Johnson. From 1999 to 2010, Hansen worked as an operations engineer in Johnson’s Flight Operations Directorate, focusing on astronaut training and flight control. She developed procedures, planned spacewalks, and trained astronauts to work in space suits with specialty tools on Space Shuttle, International Space Station, and Hubble Space Telescope missions. She was instrumental in supporting real-time operations as a flight controller for space station assembly missions and the final mission to service Hubble in 2009. 

      In 2010, Hansen became the operations manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland for the Robotic Refueling Mission, a technology demonstration payload that flew to the orbiting laboratory on STS-135. By 2012 she transitioned to airborne science project management at Goddard, leading multiple missions including Operation IceBridge’s first deployment to Antarctica. Her work focused on studying changes in Earth’s ice sheets and sea ice in Greenland and Antarctica, where she collaborated with scientists, engineers, and managers to design aircraft-based Earth science missions. 
      Christy Hansen at Antarctica’s geographic south pole in 2012. Faced with her husband’s diagnosis of amyotrophic lateral sclerosis in 2014, Hansen drew on her vast experience and passion for engineering to solve a deeply personal issue on the ground. Combining her technical expertise and pioneering spirit, she led an effort to bring eye-gaze technology to Goddard, enabling individuals with neurodegenerative disabilities to continue working without the use of their hands or voice. 

      Her husband, Dave Parker, an engineer at Goddard who worked on all hubble servicing missions and tech demo payloads on the space station, was determined to keep working even when he could not use his arms, legs, hands, or voice. Together, they researched and pushed for this capability, ensuring that the technology could help many others in similar situations. 

      After collaborating with Goddard information technology and the commercial-off-the-shelf Tobi eye gaze company, they managed to implement the system within a year. Parker worked for a year and a half using this technology and supported the real-time installation of space station hardware he helped design from his hospital bed before passing away in March 2021.  

      Hansen continues to work with NASA’s Office of Diversity and Equal Opportunity to make this a standard accommodation option. 

      In her new role, she aims to support the development of an innovative acquisition strategy that fosters a robust commercial low Earth orbit environment. “I look forward to working with the CLDP team and our stakeholders to develop a creative and smart approach that enables a commercially led and operated low Earth orbit destination,” she said. “This includes fostering an open dialogue across disciplines, including critical tech authorities, programs, our industry and international partners, and Johnson and headquarters leadership. We can only go great places together.” 

      Her background in human spaceflight and science missions has given her a unique perspective. “I truly enjoy building partnerships and working across broad teams to achieve amazing goals,” she said. “This diversity of experience gave me an understanding of the critical goals, priorities, and culture of our key NASA stakeholders – and how we must integrate and work together to achieve the NASA mission.” 

      Through her career, she has learned to be open to new ideas and ways of doing things. “Be curious and proactively create space for all voices to be heard; there is more than one way to do things, and you must be open and receptive to different communication styles and experiences,” she said. “I lean on my broad experiences wherever I go.” 
      Christy Hansen at NASA’s Goddard Space Flight Center in Greenbelt, Maryland during her time as the project manager for NASA’s Operation IceBridge. NASA/Bill Hrybyk For young girls interested in a career in space, her advice is clear: “Go, go, go! You will face challenges and hurdles, but human spaceflight and NASA need your ideas, experiences, and energy. You uniquely bring momentum in a way others cannot – so don’t compare yourself to others. Study and do what you love – as that will get you through the hard times.” 

      Looking ahead, she is eager to help make space accessible and affordable to all, enabling a broader and diverse field of future flyers. “These destinations will enable critical science, human research, and tech development – important steppingstones to help us achieve our goals of landing on the Moon again and ultimately going to Mars,” she said. “No matter how dynamic and challenging our work is, my passion for human spaceflight and the NASA mission is inherently part of me.” 

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. 

      Learn more about NASA’s commercial space strategy at: 
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
    • By NASA
      4 Min Read NASA’s Webb Captures Celestial Fireworks Around Forming Star
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). The colors within this mid-infrared image reveal details about the central protostar’s behavior.
      The cosmos seems to come alive with a crackling explosion of pyrotechnics in this new image from NASA’s James Webb Space Telescope. Taken with Webb’s MIRI (Mid-Infrared Instrument), this fiery hourglass marks the scene of a very young object in the process of becoming a star. A central protostar grows in the neck of the hourglass, accumulating material from a thin protoplanetary disk, seen edge-on as a dark line.
      The protostar, a relatively young object of about 100,000 years, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera), allowed us to peer into this region and revealed this molecular cloud and protostar in opaque, vibrant colors.
      Image A: L1527 – Webb/MIRI
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules. This image includes filters representing 7.7 microns light as blue, 12.8 microns light as green, and 18 microns light as red.
      Both NIRCam and MIRI show the effects of outflows, which are emitted in opposite directions along the protostar’s rotation axis as the object consumes gas and dust from the surrounding cloud. These outflows take the form of bow shocks to the surrounding molecular cloud, which appear as filamentary structures throughout. They are also responsible for carving the bright hourglass structure within the molecular cloud as they energize, or excite, the surrounding matter and cause the regions above and below it to glow. This creates an effect reminiscent of fireworks brightening a cloudy night sky. Unlike NIRCam, however, which mostly shows the light that is reflected off dust, MIRI provides a look into how these outflows affect the region’s thickest dust and gases.
      The areas colored here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescopes’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.
      As the protostar continues to age and release energetic jets, it’ll consume, destroy, and push away much of this molecular cloud, and many of the structures we see here will begin to fade. Eventually, once it finishes gathering mass, this impressive display will end, and the star itself will become more apparent, even to our visible-light telescopes.
      The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hanna Braun hbraun@stsci.edu Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      ARTICLE/IMAGE: Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera)
      VIDEO:   Fly-through the star-forming Pillars of Creation
      INTERACTIVE: Explore star formation via a multi-wavelength view of Herbig-Haro 46/47
      POSTER: L1527 NIRCam poster
      VIDEO: Science Snippets Video: Dust and the formation of Planetary Systems
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is a nebula?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jul 02, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics James Webb Space Telescope (JWST) Nebulae Protostars Science & Research Star-forming Nebulae Stars The Universe
      View the full article
    • By NASA
      ASIA-AQ DC-8 aircraft flies over Bangkok, Thailand to monitor seasonal haze from fire smoke and urban pollution. Photo credit: Rafael Luis Méndez Peña. Tracking the spread of harmful air pollutants across large regions requires aircraft, satellites, and diverse team of scientists. NASA’s global interest in the threat of air pollution extends into Asia, where it works with partners on the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ).  This international mission integrates satellite data and aircraft measurements with local air quality ground monitoring and modeling efforts across Asia.
      Orchestrating a mission of this scale requires complicated agreements between countries, the coordination of aircraft and scientific instrumentation, and the mobilization of scientists from across the globe. To make this possible, ARC’s Earth Science Project Office (ESPO) facilitated each phase of the campaign, from site preparation and aircraft deployment to sensitive data management and public outreach.
      “Successfully meeting the ASIA-AQ mission logistics requirements was an incredible effort in an uncertainty-filled environment and a very constrained schedule to execute and meet those requirements,” explains ASIA-AQ Project Manager Jhony Zavaleta. “Such effort drew on the years long experience on international shipping expertise, heavy equipment operations, networking and close coordination with international service providers and all of the U.S. embassies at each of our basing locations.”
      Map of planned ASIA-AQ operational regions. Yellow circles indicate the original areas of interest for flight sampling. The overlaid colormap shows annual average nitrogen dioxide (NO2) concentrations observed by the TROPOMI satellite with red colors indicating the most polluted locations. Understanding Air Quality Globally
      ASIA-AQ benefits our understanding of air quality and the factors controlling its daily variability by investigating the ways that air quality can be observed and quantified. The airborne measurements collected during the campaign are directly integrated with existing satellite observations of air quality, local air quality monitoring networks, other available ground assets, and models to provide a level of detail otherwise unavailable to advance understanding of regional air quality and improve future integration of satellite and ground monitoring information.
      ESPO’s Mission-Critical Contributions
      Facilitating collaboration between governmental agencies and the academic community by executing project plans, navigating bureaucratic hurdles, and consensus building. Mission planning for two NASA aircraft. AFRC DC-8 completed 16 science flights, totaling 125 flight hours. The LaRC GIII completed 35 science flights, totaling 157.7 flight hours. Enabling international fieldwork and workforce mobilization by coordinating travel, securing authorizations and documentation, and maintaining relationships with local research partners. Managing outreach to local governments and schools. ASIA-AQ team members showcased tools used for air quality science to elementary/middle/high school students. Recent news feature here. View of ASIA-AQ aircraft in Bangkok, Thailand. ESPO staff from left to right: Dan Chirica, Marilyn Vasques, Sam Kim, Jhony Zavaleta, and Andrian Liem. Aircraft from left to right: Korean Meteorological Agency/National Institute of Meteorological Sciences, NASA LaRC GIII, NSASA DC-8, (2) Hanseo University, Sunny Air (private aircraft contracted by Korean Meteorological Agency). Photo: Rafael Mendez Peña. The flying laboratory of NASA’s DC-8
      NASA flew its DC-8 aircraft, picture above, equipped with instrumentation to monitor the quality, source, and movement of harmful air pollutants. Scientists onboard used the space as a laboratory to analyze data in real-time and share it with a network of researchers who aim to tackle this global issue.
      “Bringing the DC-8 flying laboratory and US researchers to Asian countries not only advances atmospheric research but also fosters international scientific collaboration and education,” said ESPO Project Specialist Vidal Salazar. “Running a campaign like ASIA AQ also opens doors for shared knowledge and exposes local communities to cutting-edge research.”
      Fostering Partnerships Through Expertise and Goodwill
      International collaboration fostered through this campaign contributes to an ongoing dialogue about air pollution between Asian countries.
      “NASA’s continued scientific and educational activities around the world are fundamental to building relationships with partnering countries,” said ESPO Director Marilyn Vasques. “NASA’s willingness to share data and provide educational opportunities to locals creates goodwill worldwide.”
      The role of ESPO in identifying, strategizing, and executing on project plans across the globe created a path for multi-sectoral community engagement on air quality. These global efforts to improve air quality science directly inform efforts to save lives from this hazard that affects all.
      View the full article
  • Check out these Videos

×
×
  • Create New...