Members Can Post Anonymously On This Site
Giant UFO arrives through a possible stargate on the sun
-
Similar Topics
-
By USH
On January 25, 2025, an Oklahoma City man recorded a baffling UFO that he described as a "plasma-filled jellybean." A concerned neighbor also spotted something unusual in the sky and soon, the entire neighborhood gathered outside, to witness the anomaly.
The mysterious object emitted a glow and moved erratically, mesmerizing onlookers. In his recorded footage, Frederick can be heard narrating the event. "I don’t hear anything, and it's moving unpredictably," he noted. "It looks like a jellybean, but the interior appears to be plasma."
Frederick decided to launch his drone for a closer look, but upon attempting to deploy his drone, he encountered unexplained technical failures. "My controller provides voice notifications," he explained. "It repeatedly announced, ‘unable to take off, electromagnetic interference."
After multiple attempts, he finally got the drone airborne, reaching approximately 1,000 feet beneath the UFO. However, just after capturing three images, the drone’s video function failed, and its battery, despite being fully charged, suddenly drained. "It had a 35-minute flight time," Frederick stated. "But right after taking those three pictures, the controller alerted me: ‘low battery, return to home."
Seeking expert insight, Frederick shared his footage and images with University of Oklahoma physics professor Mukremin Kilic. When asked about the sighting, Kilic remarked, "I don’t know what it is" and suggested the object was likely a drone. However, this theory does not explain why Frederick’s own drone experienced interference, raising further questions about the true nature of the UFO.
View the full article
-
By NASA
NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
Credit: USSF 30th Space Wing/Christopher
NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.
The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.
The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, Feb. 25
2 p.m. – SPHEREx and PUNCH Science Overview News Conference
Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters Joe Westlake, director, Heliophysics Division, NASA Headquarters Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC Phil Korngut, SPHEREx instrument scientist, Caltech The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Wednesday, Feb. 26
3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference
Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters David Cheney, PUNCH program executive, NASA Headquarters James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory Denton Gibson, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer Coverage of the prelaunch news conference will stream live on NASA+.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Thursday, Feb. 27
12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.
9:15 p.m. – Launch coverage begins on NASA+.
10:09 p.m. – Launch window opens.
Audio Only Coverage
Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.
Attend the Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
You can also stay connected by following and tagging these accounts:
X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP
Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program
Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese
For more information about these missions, visit:
https://science.nasa.gov/mission/spherex/
https://science.nasa.gov/mission/punch/
-end-
Alise Fisher – SPHEREx
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Laura Aguiar
Kennedy Space Center, Florida
321-593-6245
laura.aquiar@nasa.gov
Share
Details
Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Missions Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
“We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
Credit: NASA/Lillianne Hammel A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
Explore More
3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
Article 6 days ago 9 min read Combustor Facilities
Article 1 week ago
View the full article
-
By NASA
“I do evolutionary programming,” said NASA Goddard oceanographer Dr. John Moisan. “I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?”Courtesy of John Moisan Name: John Moisan
Formal Job Classification: Research oceanographer
Organization: Ocean Ecology Laboratory, Hydrosphere, Biosphere, Geophysics (HBG), Earth Science Directorate (Code 616) – duty station at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I develop ecosystem models and satellite algorithms to understand how the ocean’s ecology works. My work has evolved over time from when I coded ocean ecosystem models to the present where I now use artificial intelligence to evolve the ocean ecosystem models.
How did you become an oceanographer?
As a child, I watched a TV series called “Sea Hunt,” which involved looking for treasure in the ocean. It inspired me to want to spend my life scuba diving.
I got a Bachelor of Science in marine biology from the University of New England in Biddeford, Maine, and later got a Ph.D. from the Center for Coastal Physical Oceanography at Old Dominion University in Norfolk, Virginia.
Initially, I just wanted to do marine biology which to me meant doing lots of scuba diving, maybe living on a sailboat. Later, when I was starting my graduate schoolwork, I found a book about mathematical biology and a great professor who helped open my eyes to the world of numerical modeling. I found out that instead of scuba diving, I needed instead to spend my days behind a computer, learning how to craft ideas into equations and then code these into a computer to run simulations on ocean ecosystems.
I put myself through my initial education. I went to school fulltime, but I lived at home and hitchhiked to college on a daily basis. When I started my graduate school, I worked to support myself. I was in school during the normal work week, but from Friday evening through Sunday night, I worked 40 hours at a medical center cleaning and sterilizing the operating room instrument carts. This was during the height of the AIDS epidemic.
What was most exciting about your two field trips to the Antarctic?
In 1987, I joined a six-week research expedition to an Antarctic research station to explore how the ozone hole was impacting phytoplankton. These are single-celled algae that are responsible for making half the oxygen we breathe. Traveling to Antarctica is like visiting another planet. There are more types of blue than I’ve ever seen. It is an amazingly beautiful place to visit, with wild landscapes, glaciers, mountains, sea ice, and a wide range of wildlife. After my first trip I returned home and went back in a few months later as a biologist on a joint Polish–U.S. (National Oceanic and Atmospheric Administration) expedition to carry out a biological survey and measure how much fast the phytoplankton was growing in different areas of the Southern Ocean. We used nets to measure the amounts of fish and shrimp and took water samples to measure salinity, the amount of algae and their growth rates. We ate well, for example the Polish cook made up a large batch of smoked ice fish.
What other field work have you done?
While a graduate student, I helped do some benthic work in the Gulf of Maine. This study was focused on understanding the rates of respiration in the muds on the bottom of the ocean and on understanding how much biomass was in the muds. The project lowered a benthic grab device to the bottom where it would push a box core device into the sediments to return it to the surface. This process is sort of like doing a biopsy of the ocean bottom.
What is your goal as a research oceanographer at Goddard?
Ocean scientists measure the amount and variability of chlorophyll a, a pigment in algae, in the ocean because it is an analogue to the amount of algae or phytoplankton in the ocean. Chlorophyll a is used to capture solar energy to make sugars, which the algae use for growth. Generally, areas of the ocean that have more chlorophyll are also areas where growth or primary production is higher. So, by estimating how much chlorophyll is in the ocean we can study how these processes are changing with an aim in understanding why. NASA uses the color of the ocean using satellites to estimate chlorophyll a because chlorophyll absorbs sunlight and changes the color of the ocean. Algae have other kinds of pigments, each of which absorbs light at different wavelengths. Because different groups of algae have different levels of pigments, they are like fingerprints that can reveal the type of algae in the water. Some of my research aims at trying to use artificial intelligence and mathematical techniques to create new ways to measure these pigments from space to understand how ocean ecosystems change.
In 2024, NASA plans to launch the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, which will measure the color of the ocean at many different wavelengths. The data from this satellite can be used with results from my work on genetic programs and inverse modeling to estimate concentrations of different pigments and possibly concentrations of different types of algae in the ocean.
You have been at Goddard over 22 years. What is most memorable to you?
I develop ecosystem models. But ecosystems do not have laws in the same way that physics has laws. Equations need to be created so that the ecosystem models represent what is observed in the real world. Satellites have been a great source for those observations, but without a lot of other types of observations that are collected in the field, the ocean, it is difficult to develop these equations. In my time at NASA, I have only been able to develop models because of the great but often tedious work that ocean scientists around the world have been doing when they go on ocean expeditions to measure various ocean features, be it simple temperature or the more complicated measurements of algal growth rates. My experience with their willingness to collaborate and share data is especially memorable. This experience is also what I enjoyed with numerous scientists at NASA who have always been willing to support new ideas and point me in the right direction. It has made working at NASA a phenomenal experience.
What are the philosophical implications of your work?
The human capacity to think rapidly, to test and change our opinions based on what we learn, is slow compared to that of a computer. Computers can help us adapt more quickly. I can put 1,000 students in a room developing ecosystem model models. But I know that this process of developing ecosystem models is slow when compared what a computer can do using an artificial intelligence approach called genetic programming, it is a much faster way to generate ecosystem model solutions.
Philosophically, there is no real ecosystem model that is the best. Life and ecosystems on Earth change and adapt at rates too fast for any present-day model to resolve, especially considering climate change. The only real ecosystem model is the reality itself. No computer model can perfectly simulate ecosystems. By utilizing the fast adaptability that evolutionary computer modeling techniques provide, simulating and ultimately predicting ecosystems can be improved greatly.
How does your work have implications for scientists in general?
I do evolutionary programming. I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?
The artificial intelligence (AI) work answers questions, but you need to identify the questions. This is the greater problem when it comes to working with AI. You cannot answer the question of how to create a sentient life if you do not know how to define it. If I cannot measure life, how can I model it? I do not know how to write that equation. How does life evolve? How did the evolutionary process start? These are big questions I enjoy discussing with friends. It can be as frustrating as contemplating “nothing.”
Who inspires you?
Many of the scientists that I was fortunate to work with at various research institutes, such as Scripps Institution of Oceanography at the University of California, San Diego. These are groups of scientists are open to always willing to share their ideas. These are individuals who enjoy doing science. I will always be indebted to them for their kindness in sharing of ideas and data.
Do you still scuba dive?
Yes, I wish I could dive daily, it is a very calming experience. I’m trying to get my kids to join me.
What else do you do for fun?
My wife and I bike and travel. Our next big bike trip will hopefully be to Shangri-La City in China. I also enjoy sailing and trying to grow tropical plants. But, most of all, I enjoy helping raise my children to be resilient, empathic, and intelligent beings.
What are your words to live by?
Life. So much to see. So little time.
Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.