Jump to content

Recommended Posts

Posted
low_STSCI-H-p1805a-k-1340x520.png

Supermassive black holes, weighing millions of times as much as our Sun, are gatherers not hunters. Embedded in the hearts of galaxies, they will lie dormant for a long time until the next meal happens to come along.

The team of astronomers using observations from the Hubble Space Telescope, the Chandra X-ray Observatory, and as well as the W.M. Keck Observatory in Mauna Kea, Hawaii, and the Apache Point Observatory (APO) near Sunspot, New Mexico, zeroed in on a flickering black hole.

A black hole in the center of galaxy SDSS J1354+1327, located about 800 million light-years away, appears to have consumed large amounts of gas while blasting off an outflow of high-energy particles. The fresh burst of fuel might have been supplied by a bypassing galaxy. The outflow eventually switched off then turned back on about 100,000 years later. This is strong evidence that accreting black holes can switch their power output off and on again over timescales that are short compared to the 13.8-billion-year age of the universe.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 8 Min Read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
      Florida’s coastal wetlands are a complex patchwork of ecosystem — consisting of sawgrass marshland, hardwood hammocks, freshwater swamps, and mangrove forests. Credits:
      NASA/ Nathan Marder Across the street from the Flamingo Visitor’s Center at the foot of Florida’s Everglades National Park, there was once a thriving mangrove population — part of the largest stand of mangroves in the Western Hemisphere. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests.
      When Hurricane Irma made landfall in September 2017 as a category 4 storm, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of mangrove forest. Seven years later, most of the mangroves here haven’t seen any new growth. “At this point, I doubt they’ll recover,” said David Lagomasino, a professor of coastal studies at East Carolina University.
      Lagomasino was in the Everglades conducting fieldwork as part of NASA’s BlueFlux Campaign, a three-year project that aims to study how sub-tropical wetlands influence atmospheric levels of carbon dioxide (CO2) and methane. Both gases absorb solar radiation and have a warming effect on Earth’s atmosphere.
      A mangrove “ghost forest” near Florida’s southernmost coast houses the remains of a once-thriving mangrove stand. NASA/Nathan Marder The campaign is led by Ben Poulter, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies the way human activity and climate change affect the carbon cycle. As wetland vegetation responds to increasing temperatures, rising sea levels, and severe weather, Poulter’s team is trying to determine how much carbon dioxide wetland vegetation removes from the atmosphere and how much methane it produces. Ultimately this research will help scientists develop models to estimate and monitor greenhouse gas concentrations in coastal areas around the globe.
      Although coastal wetlands account for less than 2% of the planet’s land-surface area, they remove a significant amount of carbon dioxide from the atmosphere. Florida’s coastal wetlands alone remove an estimated 31.8 million metric tons each year. A commercial aircraft would have to circle the globe more than 26,000 times to produce the same amount of carbon dioxide. Coastal wetlands also store carbon in marine sediments, keeping it underground — and out of the atmosphere — for thousands of years. This carbon storage capacity of oceans and wetlands is so robust that it has its own name: blue carbon.
      “We’re worried about losing that stored carbon,” Poulter said. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”
      The one-meter core samples collected by Lagomasino will be used to identify historic rates of blue carbon development in mangrove forests and to evaluate how rates of carbon storage respond to specific environmental pressures, like sea level rise or the increasing frequency of tropical cyclones.
      Early findings from space-based flux data confirm that, in addition to acting as a sink of carbon dioxide, tropical wetlands are a significant source of methane — a greenhouse gas that traps heat roughly 80 times more efficiently than carbon dioxide. In fact, researchers estimate that Florida’s entire wetland expanse produces enough methane to offset the benefits of wetland carbon removal by about 5%.
      Everglades peat contains history of captured carbon
      During his most recent fieldwork deployment, Lagomasino used a small skiff to taxi from one research site to the next; many parts of the Everglades are virtually unreachable on foot. At each site, he opened a broad, black case and removed a metallic peat auger, which resembles a giant letter opener. The instrument is designed to extract core samples from soft soils. Everglades peat — which is composed almost entirely of the carbon-rich, partially decomposed roots, stems, and leaves of mangroves — offers a perfect study subject.
      Lagomasino plunged the auger into the soil, using his body weight to push the instrument into the ground. Once the sample was secured, he freed the tool from the Earth, presenting a half-cylinder of soil. Each sample was sealed and shipped back to the lab — where they are sliced horizontally into flat discs and analyzed for their age and carbon content.
      East Carolina University professor of coastal studies David Lagomasino (right) and his doctoral student Daystar Babanawo explore the Everglades by boat. The plant life here consists almost entirely of mangroves, which can withstand the saltwater tides that characterize coastal wetlands. Scientific studies of Florida’s coastal ecosystems have historically been limited by the relative inaccessibility of the region. NASA/Nathan Marder Everglades peat forms quickly. In Florida’s mangrove forests, around 2 to 10 millimeters of soil are added to the forest floor each year, building up over time like sand filling an hourglass. Much like an ice core, sediment cores offer a window into Earth’s past. The deeper the core, the further into the past one can see. By looking closely at the contents of the soil, researchers can uncover information about the climate conditions from the time the soil formed.
      In some parts of the Everglades, soil deposits can reach depths of up to 3 meters (10 feet), where one meter might represent close to 100 years of peat accumulation, Lagomasino said. Deep in the Amazon rainforest, by comparison, a similarly sized, one-meter deposit could take more than 1,000 years to develop. This is important in the context of restoration efforts: in coastal wetlands, peat losses can be restored up to 10 times faster than they might be in other forest types.
      Lagomasino holds a sample of peat soil collected from the forest floor. The source of the soil’s elevated carbon content — evident from its coarse, fibrous texture — is primarily the thread-like root hairs routinely recycled by the surrounding mangroves. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years. NASA/Nathan Marder “There are also significant differences in fluxes between healthy mangroves and degraded ones,” said Lola Fatoyinbo, a research scientist in the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. In areas where mangrove forests are suffering, for example, after a major hurricane, “you end up with more greenhouse gases in the atmosphere,” she said. As wetland ecology responds to intensifying natural and human pressures, the data product will help researchers precisely monitor the impact of ecological changes on global carbon dioxide and methane levels.
      Wetland methane: A naturally occurring but potent greenhouse gas
      Methane is naturally produced by microbes that live in wetland soils. But as wetland conditions change, the growth rate of methane-producing microbes can spike, releasing the gas into the atmosphere at prodigious rates.
      Since methane is a significantly more potent greenhouse gas than carbon dioxide, possessing a warming potential 84 times greater over a 25-year period, methane emissions undermine some of the beneficial services that blue carbon ecosystems provide as natural sinks for atmospheric carbon dioxide.
      While Lagomasino studied the soil to understand long-term storage of greenhouse gases, Lola Fatoyinbo, a research scientist in NASA’s Biospheric Sciences Lab, and Peter Raymond, an ecologist at Yale University’s School of the Environment, measured the rate at which these gases are exchanged between wetland vegetation and the atmosphere. This metric is known as gaseous flux.
      Lagomasino holds a sample of peat soil collected from the forest floor. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years. NASA/Nathan Marder NASA/Nathan Marder The scientists measure flux using chambers designed to adhere neatly to points where significant rates of gas exchange occur. They secure box-like chambers to above-ground roots and branches while domed chambers measure gas escaping from the forest floor. The concentration of gases trapped in each chamber is measured over time.
      In general, as the health of wetland ecology declines, less carbon dioxide is removed, and more methane is released. But the exact nature of the relationship between wetland health and gaseous flux is not well understood. What does flux look like in ghost forests, for example? And how do more subtle changes in variables like canopy coverage or species distribution influence levels of carbon dioxide sequestration or methane production?
      “We’re especially interested in the methane part,” Fatoyinbo said. “It’s the least understood, and there’s a lot more of it than we previously thought.”
      Based on data collected during BlueFlux fieldwork, “we’re finding that coastal wetlands remove massive amounts of carbon dioxide and produce substantial amounts of methane,” Poulter said. “But overall, these ecosystems appear to provide a net climate benefit, removing more greenhouse gases than they produce.” That could change as Florida’s wetlands respond to continued climate disturbances.
      The future of South Florida’s ecology
      Florida’s wetlands are roughly 5,000 years old. But in just the past century, more than half of the state’s original wetland coverage has been lost as vegetation was cleared and water was drained to accommodate the growing population. The Everglades system now contains 65% less peat and 77% less stored carbon than it did prior to drainage. The future of the ecosystem — which is not only an important reservoir for atmospheric carbon, but a source of drinking water for more than 7 million Floridians and a home to flora and fauna found nowhere else on Earth — is uncertain.
      Scientists who have dedicated their careers to understanding and restoring South Florida’s ecology are hopeful. “Nature and people can coexist,” said Meenakshi Chabba, an ecologist and resilience scientist at the Everglades Foundation in Florida’s Miami-Dade County. “But we need good science and good management to reach that goal.”
      The next step for NASA’s BlueFlux campaign is the development of a satellite-based data product that can help regional stakeholders evaluate in real-time how Florida’s wetlands are responding to restoration efforts designed to protect one of the state’s most precious natural resources — and all those who depend on it.
      By Nathan Marder
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      About the Author
      Nathan Marder

      Share








      Details
      Last Updated Mar 13, 2025 Editor Jenny Marder Contact Nathan Marder Related Terms
      Earth Climate Change Earth’s Atmosphere Greenhouse Gases Explore More
      5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10


      Article


      22 hours ago
      2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds


      Article


      1 week ago
      1 min read An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
      This data visualization showing ocean currents around the world uses data from NASA’s Estimating the…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By European Space Agency
      Help us uncover the secrets of the Sun! Our Solar Orbiter spacecraft has been watching the Sun since February 2020. With five years’ worth of data waiting to be explored, it’s time to dig in. The new ‘Solar Radio Burst Tracker’ Zooniverse project is ready for you.
      View the full article
    • By NASA
      u0022The really interesting thing to me is how time theoretically acts strangely around black holes. According to Albert Einstein’s theory of gravity, black holes change the flow of time,u0022 said Jeremy Schnittman, Goddard research astrophysicist. u0022So much of how we experience the world is based on time, time marching steadily forward. Anything that changes that is a fascinating take on reality.u0022u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e Name: Jeremy Schnittman
      Formal Job Classification: Research astrophysicist
      Organization: Gravitational Astrophysics Laboratory, Astrophysics Division (Code 663)
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I try to understand the formation and properties of black holes. I also help develop ideas for new missions to study black holes.
      What drew you to astrophysics?
      I always liked science and math. The great thing about astrophysics is that it involves a little bit of everything – math, computer programming, physics, chemistry and even philosophy to understand the big picture, the enormity of space.
      I have a B.A. in physics from Harvard, and a Ph.D. in physics from MIT. I came to Goddard in 2010 after two post-doctoral fellowships.
      Explore how the extreme gravity of two orbiting supermassive black holes distorts our view. In this visualization, disks of bright, hot, churning gas encircle both black holes, shown in red and blue to better track the light source. The red disk orbits the larger black hole, which weighs 200 million times the mass of our Sun, while its smaller blue companion weighs half as much. Zooming into each black hole reveals multiple, increasingly warped images of its partner. Watch to learn more.
      Credits: NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell
      Download high-resolution video and images from NASA’s Scientific Visualization Studio As an astrophysicist, what do you think about?
      I think of myself as a computational physicist as opposed to an experimental or observational physicist. I write many computer programs to do computer simulations of black holes. I also do a lot of theoretical physics, which is pencil and paper work. I think a lot about equations and math to understand black holes.
      What is most philosophical about black holes to me is not so much what people most often think about, that their gravity is so strong that even light cannot escape. The really interesting thing to me is how time theoretically acts strangely around black holes. According to Albert Einstein’s theory of gravity, black holes change the flow of time. If you could get close enough to a black hole, theoretically you could go back and forth in time. All our experiments and observations seem to indicate that is how black holes might behave.
      So much of how we experience the world is based on time, time marching steadily forward. Anything that changes that is a fascinating take on reality.
      Related Link: Gravity Assist: Black Hole Mysteries, with Jeremy Schnittman What do you tell the people you mentor?
      I mentor undergraduate, graduate, and post graduate students in astrophysics. Since we are working remotely, I have students from all over the country. I help them with their research projects which mostly relate to black holes in some way. I also offer career advice and help them with their work-life balance. When possible, family comes first.
      There are more people coming out of graduate school in astrophysics than there are jobs, so there are going to be many people who will not work for NASA or as a professor. Fortunately, there are a lot of other fascinating, related jobs, and I help guide the students there.
      What do you do for fun?
      I have a woodshop in our basement where I build furniture, dollhouses, toys, and other items for gifts. As a theoretical physicist, I don’t get to work in a lab. So it is nice to have some hands on experience.
      I do a lot of hiking and cycling to exercise. I also enjoy spending time with my family.
      Who is your favorite author?
      Andy Weir is probably my favorite sci-fi author. I also love the epic naval historical fiction by Patrick O’Brian.
      Who inspires you?
      My childhood hero, who is still my scientific hero, is Albert Einstein. The more I work in astrophysics, the more he impresses me. Every single one of his predictions that we have been able to test has proven true. It may be a while, but someday I hope we prove his theories about time travel.
      Also, I admire Kip Thorne, an American physicist from Cal Tech and recent Nobel laureate, who is “the man” when it comes to black holes. He is also a really nice, good guy, a real mensch. Very humble and down-to-earth. He is always extremely patient, kind and encouraging especially to the younger scientists. He is a good role model as I transition from junior to more senior status.
      What is your one big dream?
      I make a lot of predictions, so it would be exciting if one of my theories was proven correct. Hopefully someday.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations with Goddard Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Astrophysics Galaxies, Stars, & Black Holes Research People of Goddard Explore More
      8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
      Article 14 mins ago 5 min read Mark SubbaRao Brings Data to Life Through Art
      Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
      Article 14 mins ago View the full article
    • By NASA
      Perseus Cluster: X-ray: NASA/CXC/SAO/V. Olivares et al.; Optical/IR: DSS; H-alpha: CFHT/SITELLE; Centaurus Cluster: X-ray: NASA/CXC/SAO/V. Olivaresi et al.; Optical/IR: NASA/ESA/STScI; H-alpha: ESO/VLT/MUSE; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have taken a crucial step in showing that the most massive black holes in the universe can create their own meals. Data from NASA’s Chandra X-ray Observatory and the Very Large Telescope (VLT) provide new evidence that outbursts from black holes can help cool down gas to feed themselves.
      This study was based on observations of seven clusters of galaxies. The centers of galaxy clusters contain the universe’s most massive galaxies, which harbor huge black holes with masses ranging from millions to tens of billions of times that of the Sun. Jets from these black holes are driven by the black holes feasting on gas.
      These images show two of the galaxy clusters in the study, the Perseus Cluster and the Centaurus Cluster. Chandra data represented in blue reveals X-rays from filaments of hot gas, and data from the VLT, an optical telescope in Chile, shows cooler filaments in red.
      The results support a model where outbursts from the black holes trigger hot gas to cool and form narrow filaments of warm gas. Turbulence in the gas also plays an important role in this triggering process.
      According to this model, some of the warm gas in these filaments should then flow into the centers of the galaxies to feed the black holes, causing an outburst. The outburst causes more gas to cool and feed the black holes, leading to further outbursts.
      This model predicts there will be a relationship between the brightness of filaments of hot and warm gas in the centers of galaxy clusters. More specifically, in regions where the hot gas is brighter, the warm gas should also be brighter. The team of astronomers has, for the first time, discovered such a relationship, giving critical support for the model.
      This result also provides new understanding of these gas-filled filaments, which are important not just for feeding black holes but also for causing new stars to form. This advance was made possible by an innovative technique that isolates the hot filaments in the Chandra X-ray data from other structures, including large cavities in the hot gas created by the black hole’s jets.
      The newly found relationship for these filaments shows remarkable similarity to the one found in the tails of jellyfish galaxies, which have had gas stripped away from them as they travel through surrounding gas, forming long tails. This similarity reveals an unexpected cosmic connection between the two objects and implies a similar process is occurring in these objects.
      This work was led by Valeria Olivares from the University of Santiago de Chile, and was published Monday in Nature Astronomy. The study brought together international experts in optical and X-ray observations and simulations from the United States, Chile, Australia, Canada, and Italy. The work relied on the capabilities of the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT, which generates 3D views of the universe.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features composite images shown side-by-side of two different galaxy clusters, each with a central black hole surrounded by patches and filaments of gas. The galaxy clusters, known as Perseus and Centaurus, are two of seven galaxy clusters observed as part of an international study led by the University of Santiago de Chile.
      In each image, a patch of purple with neon pink veins floats in the blackness of space, surrounded by flecks of light. At the center of each patch is a glowing, bright white dot. The bright white dots are black holes. The purple patches represent hot X-ray gas, and the neon pink veins represent filaments of warm gas. According to the model published in the study, jets from the black holes impact the hot X-ray gas. This gas cools into warm filaments, with some warm gas flowing back into the black hole. The return flow of warm gas causes jets to again cool the hot gas, triggering the cycle once again.
      While the images of the two galaxy clusters are broadly similar, there are significant visual differences. In the image of the Perseus Cluster on the left, the surrounding flecks of light are larger and brighter, making the individual galaxies they represent easier to discern. Here, the purple gas has a blue tint, and the hot pink filaments appear solid, as if rendered with quivering strokes of a paintbrush. In the image of the Centaurus Cluster on the right, the purple gas appears softer, with a more diffuse quality. The filaments are rendered in more detail, with feathery edges, and gradation in color ranging from pale pink to neon red.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds
      A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. Credits:
      NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). In December 2022, less than six months after commencing science operations, NASA’s James Webb Space Telescope revealed something never seen before: numerous red objects that appear small on the sky, which scientists soon called “little red dots” (LRDs). Though these dots are quite abundant, researchers are perplexed by their nature, the reason for their unique colors, and what they convey about the early universe.
      A team of astronomers recently compiled one of the largest samples of LRDs to date, nearly all of which existed during the first 1.5 billion years after the big bang. They found that a large fraction of the LRDs in their sample showed signs of containing growing supermassive black holes.
      “We’re confounded by this new population of objects that Webb has found. We don’t see analogs of them at lower redshifts, which is why we haven’t seen them prior to Webb,” said Dale Kocevski of Colby College in Waterville, Maine, and lead author of the study. “There’s a substantial amount of work being done to try to determine the nature of these little red dots and whether their light is dominated by accreting black holes.”
      Image A: Little Red Dots (NIRCam Image)
      A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. From their sample, they found that these mysterious red objects that appear small on the sky emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang. NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). A Potential Peek Into Early Black Hole Growth
      A significant contributing factor to the team’s large sample size of LRDs was their use of publicly available Webb data. To start, the team searched for these red sources in the Cosmic Evolution Early Release Science (CEERS) survey before widening their scope to other extragalactic legacy fields, including the JWST Advanced Deep Extragalactic Survey (JADES) and the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) survey.
      The methodology used to identify these objects also differed from previous studies, resulting in the census spanning a wide redshift range. The distribution they discovered is intriguing: LRDs emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang.
      The team looked toward the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES) for spectroscopic data on some of the LRDs in their sample. They found that about 70 percent of the targets showed evidence for gas rapidly orbiting 2 million miles per hour (1,000 kilometers per second) – a sign of an accretion disk around a supermassive black hole. This suggests that many LRDs are accreting black holes, also known as active galactic nuclei (AGN).
      “The most exciting thing for me is the redshift distributions. These really red, high-redshift sources basically stop existing at a certain point after the big bang,” said Steven Finkelstein, a co-author of the study at the University of Texas at Austin. “If they are growing black holes, and we think at least 70 percent of them are, this hints at an era of obscured black hole growth in the early universe.”
      Contrary to Headlines, Cosmology Isn’t Broken
      When LRDs were first discovered, some suggested that cosmology was “broken.” If all of the light coming from these objects was from stars, it implied that some galaxies had grown so big, so fast, that theories could not account for them.
      The team’s research supports the argument that much of the light coming from these objects is from accreting black holes and not from stars. Fewer stars means smaller, more lightweight galaxies that can be understood by existing theories.
      “This is how you solve the universe-breaking problem,” said Anthony Taylor, a co-author of the study at the University of Texas at Austin.
      Curiouser and Curiouser
      There is still a lot up for debate as LRDs seem to evoke even more questions. For example, it is still an open question as to why LRDs do not appear at lower redshifts. One possible answer is inside-out growth: As star formation within a galaxy expands outward from the nucleus, less gas is being deposited by supernovas near the accreting black hole, and it becomes less obscured. In this case, the black hole sheds its gas cocoon, becomes bluer and less red, and loses its LRD status.
      Additionally, LRDs are not bright in X-ray light, which contrasts with most black holes at lower redshifts. However, astronomers know that at certain gas densities, X-ray photons can become trapped, reducing the amount of X-ray emission. Therefore, this quality of LRDs could support the theory that these are heavily obscured black holes.
      The team is taking multiple approaches to understand the nature of LRDs, including examining the mid-infrared properties of their sample, and looking broadly for accreting black holes to see how many fit LRD criteria. Obtaining deeper spectroscopy and select follow-up observations will also be beneficial for solving this currently “open case” about LRDs.
      “There’s always two or more potential ways to explain the confounding properties of little red dots,” said Kocevski. “It’s a continuous exchange between models and observations, finding a balance between what aligns well between the two and what conflicts.”
      These results were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and have been submitted for publication in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Abigail Major – amajor@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science – Dale Kocevski (Colby College)
      Related Information
      3D visualization: CEERS Fly Through visualization and JADES GOODS South Fly Through visualization
      Graphic: What is cosmological redshift?
      Graphic: Dissecting Supermassive Black Holes
      Article:  Webb Science: Galaxies Through Time
      Web Page: Learn more about black holes
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a Black Hole?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Black Holes



      Universe


      Share








      Details
      Last Updated Jan 14, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Supermassive Black Holes The Universe View the full article
  • Check out these Videos

×
×
  • Create New...