Members Can Post Anonymously On This Site
‘Project Arcwater’ reigns as 2022 Spark Tank winner
-
Similar Topics
-
By NASA
The Fresh Eyes on Ice team receives the C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities. H. Buurman Congratulations to the Fresh Eyes on Ice project, which received a C. Peter Magrath exemplary project award from the Association of Public and Land-grant Universities! The award recognizes programs that demonstrate how colleges and universities have redesigned their learning, discovery, and engagement missions to deepen their partnerships and achieve broader impacts in their communities.
“Thank you to all of you for making this project what it is.” said Fresh Eyes on Ice project lead Research Professor Katie Spellman from the University of Alaska, Fairbanks. “We couldn’t do it without you.”
Fresh Eyes on Ice tracks changes in the timing and thickness of ice throughout Alaska and the circumpolar north. You can get involved by downloading the GLOBE Observer app and taking photos of ice conditions using the GLOBE Land Cover protocol.
Fresh Eyes on Ice is supported by the Navigating the New Arctic Program of the U.S. National Science Foundation and the NASA Citizen Science for Earth Systems Program.
Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Dec 05, 2024 Related Terms
Citizen Science Earth Science Explore More
4 min read 2024 AGU Fall Meeting Hyperwall Schedule
Article
1 day ago
2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!
Article
1 week ago
9 min read The Earth Observer Editor’s Corner: Fall 2024
Article
3 weeks ago
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Energy Program Manager for Facility Projects Wayne Thalasinos, left, stands with NASA Stennis Sustainability Team Lead Alvin Askew at the U.S. Department of Energy in Washington, D.C., on Oct. 30. The previous day, the Department of Energy announced NASA Stennis will receive a $1.95 million grant for an energy conservation project at the south Mississippi center. The Stennis Sustainability Team consists of NASA personnel and contract support. NASA members include Askew, Missy Ferguson and Teenia Perry. Contract members include Jordan McQueen (Synergy-Achieving Consolidated Operations and Maintenance); Michelle Bain (SACOM); Matt Medick (SACOM); Thomas Mitchell (SACOM); Lincoln Gros (SACOM), and Erik Tucker (Leidos). NASA Stennis NASA’s Stennis Space Center has been awarded a highly competitive U.S. Department of Energy grant to transform its main administration building into a facility that produces as much renewable energy as it uses.
Following an Oct. 29 announcement, NASA Stennis, located near Bay St. Louis, Mississippi, will receive $1.95 million through the Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Program. The grant will fund installation of a four-acre solar panel array onsite that can generate up to 1 megawatt of electricity.
“This is a flagship project for our NASA center,” said NASA Stennis Director John Bailey. “It will provide renewable energy to help reduce our carbon footprint, contributing to NASA’s agencywide goal of zero greenhouse gas emissions by 2030.”
The AFFECT Program awards grants to help the federal government achieve its goal of net-zero greenhouse gas emissions by all federal buildings by 2045. More than $1 billion in funding proposals was requested by federal agencies for the second, and final, phase of the initiative. A total of $149.87 million subsequently was awarded for 67 energy conservation and clean energy projects at federal facilities across 28 U.S. states and territories and in six international locations. NASA Stennis is the only agency in Mississippi to receive funding.
The site’s solar panel array will build on an $1.65 million energy conservation project already underway at the south Mississippi site to improve energy efficiency. The solar-generated electricity can be used in a number of ways, from powering facility lighting to running computers. The array also will connect to the electrical grid to allow any excess energy to be utilized elsewhere onsite.
“This solar panel addition will further enhance our energy efficiency,” said NASA Stennis Sustainability Team Lead Alvin Askew. “By locating the solar photovoltaic array by the Emergency Operations Center, it also has potential future benefits in providing backup power to that facility during outages.”
The NASA Stennis proposal was one of several submitted by NASA centers for agency consideration. Following an agency review process, NASA submitted multiple projects to the Department of Energy for grant consideration.
“This was a very competitive process, and I am proud of the NASA Stennis Sustainability Team,” NASA Stennis Center Operations Director Michael Tubbs said. “The team’s hard work in recent years and its commitment to continuous improvement in onsite energy conversation laid the groundwork to qualify for this grant. Mr. Askew, in particular, continues to be a leader in creative thinking, helping us meet agency sustainability goals.”
The NASA Stennis administration building was constructed in 2008 as a Leadership in Energy and Environmental Design-certified, all-electric facility and currently has net-zero emissions.
For information about NASA’s Stennis Space Center, visit:
https://www.nasa.gov/stennis
Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 1 day ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
Article 1 day ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
Article 1 day ago Share
Details
Last Updated Nov 14, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
Multi-User Test Complex
Propulsion Test Engineering
NASA Stennis Front Door
NASA Stennis Media Resources
View the full article
-
By Space Force
A prototype F-16 Fight Falcon cockpit collapsible ladder for agile combat employment and contingency operations emerged as the 2024 Spark Tank winner at the Pentagon.
View the full article
-
By USH
Imagine waking up one morning to a world where everything you know is turned upside down. Overnight, groundbreaking (false) archaeological discoveries challenge the foundations of every major religion, leaving society in turmoil and disbelief.
Before you can even comprehend what’s happening, the sky begins to change. Towering, hyper-realistic projections of gods appear above major cities worldwide, communicating directly with their followers, not through spoken words, but telepathically.
As panic grips the planet, reports of UFO sightings flood the news. Global leaders urge people to unite in the face of an impending extraterrestrial threat. In just two days, the world you once knew has crumbled.
This scenario sounds like a plot from a science fiction movie, but some conspiracy theorists believe this could be part of a secret agenda known as Project Blue Beam, an alleged psyop designed by powerful elites to bring about a New World Order and reshape society.
Serge Monast was such a conspiracy theorist. He is mostly known for his promotion of the Project Blue Beam conspiracy theory, Under the guise of a heart attack he died in his home in December 1996 at age 51.
According to Serge Monast Project Blue Beam has four stages:
Step 1: Discrediting Archaeological Knowledge. The first phase involves revealing falsified archaeological findings that call into question the core beliefs of every major religion, creating widespread confusion and societal disruption.
Step 2: Global Holographic Projections of Religious Figures.A "space show" is staged where three-dimensional holographic projections of messianic figures appear in the skies over different regions of the world, each corresponding to the dominant religious beliefs in that area.
Step 3: Telepathic Communication. The third phase involves the use of advanced technology to simulate telepathic communication, where individuals believe they are receiving direct messages from their deities or spiritual leaders.
Step 4: The Grand Deception. The final stage is divided into three parts: 1. Convincing the global population that an alien invasion is imminent in every major city. 2. Persuading Christians that the Rapture is about to occur. 3. Using a mix of electronic manipulation and supernatural forces to create an illusion that will penetrate all forms of communication and technology, even infiltrating household appliances.
While many people dismiss Project Blue Beam as pure fantasy, the theory raises an unsettling question: could such a grand deception ever really be pulled off? And if so, how can we prepare for the possibility of such a dramatic upheaval?
View the full article
-
By NASA
In her six years working with NASA, Miranda Peters has filled a variety of roles. She trained in flight control for the International Space Station, worked as a safety engineer in the station’s program office, and served as a project engineer working on next-generation spacesuit assembly and testing.
She has also embraced an unofficial duty: speaking openly and honestly about her neurodivergence.
“I used to hide it or avoid talking about it. I used to only see it as an impediment, but now I see how I can also do things or think about things in a unique way because of my disability,” she said. Peters said that when her neurodivergence impacts her ability to do something, she is honest about it and seeks help from her colleagues. “My hope is that when I talk about it openly, I am creating an environment where others with disabilities also feel comfortable being their true selves, in addition to humanizing the disabled community for those who are not a part of it.”
Miranda Peters stands inside one of Johnson Space Center’s testing chambers in Houston with an Exploration Extravehicular Mobility Unit (xEMU) in the background.NASA Over time, Peters has also shifted her self-perception. “I’m an anxious person and was made to feel self-conscious about that in the past, but that anxiety also makes me transparent about what I’m doing and where the gaps in my knowledge are, which has earned praise from team leadership,” she said. Similarly, while Peters once saw her sensitivity as a weakness, she learned to appreciate her ability to empathize with and anticipate the needs of others. “That makes me a good mentor and leader,” she said.
Learning to filter feedback has been another important lesson. “Advice and criticism are both useful tools, but not all of the time,” she explained. “I found myself tightly holding on to all of the criticism I received. It was easier to determine which advice didn’t work for me.” When Peters stopped to ask herself if she would take advice from the same person who was critiquing her, it became easier to take their feedback “with a pinch of salt.”
Miranda Peters (center) with the SxEMU Chamber C testing team.NASA Peters applies these lessons learned as a design verification and test hardware lead within the Spacesuit and Crew Survival Systems Branch at Johnson Space Center in Houston. She currently supports tests of the Portable Life Support System (xPLSS) that will be integrated into the new spacesuits worn by astronauts on future missions to explore the lunar surface. She is responsible for assembling and disassembling test units, making hardware and software updates, and integrating the xPLSS with various components of the spacesuit, known as the xEMU.
Peters’ most recent prior position was assembly and integration engineer within the same branch. She had an opportunity to serve as the interim xPLSS hardware lead when a colleague went on leave for several months, and suddenly found herself managing a major project. “We got a lot done in a short amount of time without loss of procedural integrity, even when we encountered unexpected changes in schedule,” she said. “I also used this large amount of lab work as an opportunity to train new hires and interns in assembly processes.” When the colleague returned, Peters was promoted to the newly created role overseeing design verification and testing.
“I really love how universal spacesuits are in their ability to excite and draw wonder from across the human spaceflight community and the general public,” she said. “Working on the xEMU project has affirmed for me that human surface mobility is the field that I want to make my career.” That realization inspired Peters to pursue a graduate degree in space architecture from the University of Houston, which she expects to complete in May 2026.
Miranda Peters (center) with members of the Portable Life Support System team during an assembly activity in 2021.Miranda Peters Peters looks forward to a future where NASA’s astronaut classes include individuals with different abilities. She encourages agency leaders, contractors, and others to have open conversations about workplace accommodations early in their hiring and performance review processes. “I think if we provide the opportunity to talk about accommodations and how to request them, employees would be more empowered to ask for what they need to be successful,” she said. Educating managers about available accommodations and allocating resources to expand the accessibility of those accommodations would also be helpful.
Peters hopes to pass that feeling of empowerment on to the Artemis Generation. “Empowerment to be themselves, to do the hard things, and to not limit themselves,” she said. “We need to take advantage of all the opportunities we can, and not let the fear of failure or not being ‘good enough’ stop us from going where we want to.”
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.