Jump to content

Recommended Posts

Posted
low_STScI-H-p1809a-k-1340x520.png

Using Hubble and Spitzer space telescopes, scientists studied the “hot Saturn” called WASP-39b — a hot, bloated, Saturn-mass exoplanet located about 700 light-years from Earth. By dissecting starlight filtering through the planet’s atmosphere into its component colors, the team found clear evidence for a large amount of water vapor. In fact, WASP-39b has three times as much water as Saturn does. Although the researchers predicted they’d see water, they were surprised by how much they found. This suggests that the planet formed farther out from the star, where it was bombarded by a lot of icy material. Because WASP-39b has so much more water than Saturn, it must have formed differently from our famously ringed neighbor.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Typically, asteroids — like the one depicted in this artist’s concept — originate from the main asteroid belt between the orbits of Mars and Jupiter, but a small population of near-Earth objects may also come from the Moon’s surface after being ejected into space by an impact.NASA/JPL-Caltech The near-Earth object was likely ejected into space after an impact thousands of years ago. Now it could contribute new insights to asteroid and lunar science.
      The small near-Earth object 2024 PT5 captured the world’s attention last year after a NASA-funded telescope discovered it lingering close to, but never orbiting, our planet for several months. The asteroid, which is about 33 feet (10 meters) wide, does not pose a hazard to Earth, but its orbit around the Sun closely matches that of our planet, hinting that it may have originated nearby.
      As described in a study published Jan. 14 in the Astrophysical Journal Letters, researchers have collected further evidence of 2024 PT5 being of local origin: It appears to be composed of rock broken off from the Moon’s surface and ejected into space after a large impact.
      “We had a general idea that this asteroid may have come from the Moon, but the smoking gun was when we found out that it was rich in silicate minerals — not the kind that are seen on asteroids but those that have been found in lunar rock samples,” said Teddy Kareta, an astronomer at Lowell Observatory in Arizona, who led the research. “It looks like it hasn’t been in space for very long, maybe just a few thousand years or so, as there’s a lack of space weathering that would have caused its spectrum to redden.”
      The asteroid was first detected on Aug. 7, 2024, by the NASA-funded Sutherland, South Africa, telescope of the University of Hawai’i’s Asteroid Terrestrial-impact Last Alert System (ATLAS). Kareta’s team then used observations from the Lowell Discovery Telescope and the NASA Infrared Telescope Facility (IRTF) at the Mauna Kea Observatory in Hawai’i to show that the spectrum of reflected sunlight from the small object’s surface didn’t match that of any known asteroid type; instead, the reflected light more closely matched rock from the Moon.
      Not (Old) Rocket Science
      A second clue came from observing how the object moves. Along with asteroids, Space Age debris, such as old rockets from historic launches, can also be found in Earth-like orbits.
      The difference in their orbits has to do with how each type responds to solar radiation pressure, which comes from the momentum of photons — quantum particles of light from the Sun — exerting a tiny force when they hit a solid object in space. This momentum exchange from many photons over time can push an object around ever so slightly, speeding it up or slowing it down. While a human-made object, like a hollow rocket booster, will move like an empty tin can in the wind, a natural object, such as an asteroid, will be much less affected.
      Researchers studying asteroid 2024 PT5 have plotted its looping motion on two graphs. To a trained eye, they show that the object never gets captured by Earth’s gravity but, instead, lingers nearby before continuing its orbit around the Sun. NASA/JPL-Caltech To rule out 2024 PT5 being space junk, scientists at NASA’s Center for Near Earth Object Studies (CNEOS), which is managed by the agency’s Jet Propulsion Laboratory in Southern California, analyzed its motion. Their precise calculations of the object’s motion under the force of gravity ultimately enabled them to search for additional motion caused by solar radiation pressure. In this case, the effects were found to be too small for the object to be artificial, proving 2024 PT5 is most likely of natural origin.
      “Space debris and space rocks move slightly differently in space,” said Oscar Fuentes-Muñoz, a study coauthor and NASA postdoctoral fellow at JPL working with the CNEOS team. “Human-made debris is usually relatively light and gets pushed around by the pressure of sunlight. That 2024 PT5 doesn’t move this way indicates it is much denser than space debris.”
      Asteroid Lunar Studies
      The discovery of 2024 PT5 doubles the number of known asteroids thought to originate from the Moon. Asteroid 469219 Kamo’oalewa was found in 2016 with an Earth-like orbit around the Sun, indicating that it may also have been ejected from the lunar surface after a large impact. As telescopes become more sensitive to smaller asteroids, more potential Moon boulders will be discovered, creating an exciting opportunity not only for scientists studying a rare population of asteroids, but also for scientists studying the Moon.
      If a lunar asteroid can be directly linked to a specific impact crater on the Moon, studying it could lend insights into cratering processes on the pockmarked lunar surface. Also, material from deep below the lunar surface — in the form of asteroids passing close to Earth — may be accessible to future scientists to study.
      “This is a story about the Moon as told by asteroid scientists,” said Kareta. “It’s a rare situation where we’ve gone out to study an asteroid but then strayed into new territory in terms of the questions we can ask of 2024 PT5.”
      The ATLAS, IRTF, and CNEOS projects are funded by NASA’s planetary defense program, which is managed by the Planetary Defense Coordination Office at NASA Headquarters in Washington. 
      For more information about asteroids and comets, visit:
      https://www.jpl.nasa.gov/topics/asteroids/
      NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise NASA Researchers Discover More Dark Comets Lesson Plan: How to Explore an Asteroid News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Kevin Schindler
      Lowell Observatory Public Information Officer
      928-607-1387
      kevin@lowell.edu
      2025-007
      Share
      Details
      Last Updated Jan 22, 2025 Related Terms
      Asteroids Earth's Moon Jet Propulsion Laboratory Planetary Defense Planetary Defense Coordination Office Planetary Science Explore More
      5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 24 hours ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 1 day ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During the 21st Century Community Learning Centers workshop, after-school educators learn to build the “Move It” student activity from NASA’s Build, Launch and Recover Student Activity Guide.Credit: Kristen Marlatt NASA and the U.S. Department of Education are teaming up to engage students in science, technology, engineering, and math (STEM) education during after-school hours. The interagency program strives to reach approximately 1,000 middle school students in more than 60 sites across 10 states to join the program, 21st Century Community Learning Centers (CCLC). 
      Members of NASA Glenn Research Center’s Office of STEM Engagement traveled to Lansing, Michigan, last month to participate in a two-day professional development training with local after-school educators and facilitators. The training focused on integrating real-world STEM challenges into the 21st CCLC programs. 
      After-school educators engage in a student activity from NASA’s Build, Launch, and Recover Student Activity Guide. In this challenge, students become engineers and NASA crawler operators while working in teams to design and build a rubber band-powered model of NASA’s crawler-transporter that can carry the most mass possible the farthest distance without failure. Credit: Kristen Marlatt  “By engaging in NASA learning opportunities, students are challenged to use critical thinking and creativity to solve real-world challenges that scientists and engineers may face,” said Darlene Walker, NASA Glenn’s Office of STEM Engagement director. “Through the 21st CCLC program, NASA and the Department of Education aim to inspire the next generation of explorers and innovators through high-quality educational content that ignites curiosity and fosters a joy of learning for students across the country.” 
      NASA Glenn education specialists will continue to provide NASA-related content and academic projects for students, in-person staff training, program support, and opportunities for students to engage with NASA scientists and engineers.  
      For more information on NASA Glenn’s STEM Engagement, visit https://www.nasa.gov/glenn-stem/
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn employees donated 11 boxes of new, unwrapped gifts to the Toys for Tots program. Credit: NASA/Sara Lowthian-Hanna  NASA’s Glenn Research Center continued a decades-long tradition of participating in the Marine Corps Reserve Toys for Tots program during the 2024 holiday season. On Dec. 9, members of the Marine Corps Reserve (3rd Battalion, 25th Marines) picked up 11 boxes of toys donated by employees from NASA Glenn’s facilities in Cleveland and Sandusky, Ohio. 
      Marine Corps representatives stand at far left and far right of NASA Glenn’s Associate Director Larry Sivic, left, Center Director Dr. Jimmy Kenyon, center, and Acting Deputy Director Dr. Wanda Peters. Credit: NASA/Sara Lowthian-Hanna  The Glenn Veterans Employee Resource Group led the donation drive. The Toys for Tots campaign collects and distributes new, unwrapped toys to less fortunate children in the area for Christmas.  
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...