Members Can Post Anonymously On This Site
Severe heatwaves putting lakes in hot water
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Data from the SWOT satellite was used to calculate average water levels for lakes and reservoirs in the Ohio River Basin from July 2023 to November 2024. Yellow indicates values greater than 1,600 feet (500 meters) above sea level; dark purple represents water levels less than 330 feet (100 meters). Data from the U.S.-European Surface Water and Ocean Topography mission gives researchers a detailed look at lakes and reservoirs in a U.S. watershed.
The Ohio River Basin stretches from Pennsylvania to Illinois and contains a system of reservoirs, lakes, and rivers that drains an area almost as large as France. Researchers with the SWOT (Surface Water and Ocean Topography) mission, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), now have a new tool for measuring water levels not only in this area, which is home to more than 25 million people, but in other watersheds around the world as well.
Since early 2023, SWOT has been measuring the height of nearly all water on Earth’s surface — including oceans, lakes, reservoirs, and rivers — covering nearly the entire globe at least once every 21 days. The SWOT satellite also measures the horizontal extent of water in freshwater bodies. Earlier this year, the mission started making validated data publicly available.
“Having these two perspectives — water extent and levels — at the same time, along with detailed, frequent coverage over large areas, is unprecedented,” said Jida Wang, a hydrologist at the University of Illinois Urbana-Champaign and a member of the SWOT science team. “This is a groundbreaking, exciting aspect of SWOT.”
Researchers can use the mission’s data on water level and extent to calculate how the amount of water stored in a lake or reservoir changes over time. This, in turn, can give hydrologists a more precise picture of river discharge — how much water moves through a particular stretch of river.
The visualization above uses SWOT data from July 2023 to November 2024 to show the average water level above sea level in lakes and reservoirs in the Ohio River Basin, which drains into the Mississippi River. Yellow indicates values greater than 1,600 feet (500 meters), and dark purple represents water levels less than 330 feet (100 meters). Comparing how such levels change can help hydrologists measure water availability over time in a local area or across a watershed.
Complementing a Patchwork of Data
Historically, estimating freshwater availability for communities within a river basin has been challenging. Researchers gather information from gauges installed at certain lakes and reservoirs, from airborne surveys, and from other satellites that look at either water level or extent. But for ground-based and airborne instruments, the coverage can be limited in space and time. Hydrologists can piece together some of what they need from different satellites, but the data may or may not have been taken at the same time, or the researchers might still need to augment the information with measurements from ground-based sensors.
Even then, calculating freshwater availability can be complicated. Much of the work relies on computer models. “Traditional water models often don’t work very well in highly regulated basins like the Ohio because they have trouble representing the unpredictable behavior of dam operations,” said George Allen, a freshwater researcher at Virginia Tech in Blacksburg and a member of the SWOT science team.
Many river basins in the United States include dams and reservoirs managed by a patchwork of entities. While the people who manage a reservoir may know how their section of water behaves, planning for water availability down the entire length of a river can be a challenge. Since SWOT looks at both rivers and lakes, its data can help provide a more unified view.
“The data lets water managers really know what other people in these freshwater systems are doing,” said SWOT science team member Colin Gleason, a hydrologist at the University of Massachusetts Amherst.
While SWOT researchers are excited about the possibilities that the data is opening up, there is still much to be done. The satellite’s high-resolution view of water levels and extent means there is a vast ocean of data that researchers must wade through, and it will take some time to process and analyze the measurements.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-176
Share
Details
Last Updated Dec 17, 2024 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Water on Earth Explore More
5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
Article 1 day ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
Article 5 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can tell us about the composition of the matter and how fast and in what direction it is moving. Quantum calorimeters are opening this new window on the Universe. First promised four decades ago, the quantum-calorimeter era of X-ray astronomy has finally dawned.
Photo of the XRISM/Resolve quantum-calorimeter array in its storage container prior to integration into the instrument. The 6×6 array, 5 mm on a side, consists of independent detectors – each one a thermally isolated silicon thermistor with a HgTe absorber. The spectrometer consisting of this detector and other essential technologies separates astrophysical X-ray spectra into about 2400 resolution elements, which can be thought of as X-ray colors.NASA GSFC A quantum calorimeter is a device that makes precise measurements of energy quanta by measuring the temperature change that occurs when a quantum of energy is deposited in an absorber with low heat capacity. The absorber is attached to a thermometer that is somewhat decoupled from a heat sink so that the sensor can heat up and then cool back down again. To reduce thermodynamic noise and the heat capacity of the sensor, operation at temperatures less than 0.1 K is required.
The idea for thermal measurement of small amounts of energy occurred in several places in the world independently when scientists observed pulses in the readout of low-temperature thermometers and infrared detectors. They attributed these spurious signals to passing cosmic-ray particles, and considered optimizing detectors for sensitive measurement of the energy of particles and photons.
The idea to develop such sensors for X-ray astronomy was conceived at Goddard Space Flight Center in 1982 when X-ray astronomers were considering instruments to propose for NASA’s planned Advanced X-ray Astrophysics Facility (AXAF). In a fateful conversation, infrared astronomer Harvey Moseley suggested thermal detection could offer substantial improvement over existing solid-state detectors. Using Goddard internal research and development funding, development advanced sufficiently to justify, just two years later, proposing a quantum-calorimeter X-ray Spectrometer (XRS) for inclusion on AXAF. Despite its technical immaturity at the time, the revolutionary potential of the XRS was acknowledged, and the proposal was accepted.
The AXAF design evolved over the subsequent years, however, and the XRS was eliminated from its complement of instruments. After discussions between NASA and the Japanese Institute of Space and Astronautical Science (ISAS), a new XRS was included in the instrument suite of the Japanese Astro-E X-ray observatory. Astro-E launched in 2000 but did not reach orbit due to an anomaly in the first stage of the rocket. Astro-E2, a rebuild of Astro-E, was successfully placed in orbit in 2005 and renamed Suzaku, but the XRS instrument ceased operation before observations started due to loss of the liquid helium, an essential part of the detector cooling system, caused by a faulty storage system.
A redesigned mission, Astro-H, that included a quantum-calorimeter instrument with a redundant cooling system was successfully launched in 2016 and renamed Hitomi. Hitomi’s Soft X-ray Spectrometer (SXS) obtained high resolution spectra of the Perseus cluster of galaxies and a few other sources before a problem with the attitude control system caused the mission to be lost roughly one month after launch. Even so, Hitomi was the first orbiting observatory to obtain a scientific result using X-ray quantum calorimeters. The spectacular Perseus spectrum generated by the SXS motivated yet another attempt to implement a spaceborne quantum-calorimeter spectrometer.
The X-ray Imaging and Spectroscopy Mission (XRISM) was launched in September 2023, with the spectrometer aboard renamed Resolve to represent not only its function but also the resolve of the U.S./Japan collaboration to study the Universe through the window of this new capability. XRISM has been operating well in orbit for over a year.
Development of the Sensor Technology
Development of the sensor technology employed in Resolve began four decades ago. Note that an X-ray quantum-calorimeter spectrometer requires more than the sensor technology. Other technologies, such as the coolers that provide a
The sensors used from XRS through Resolve were all based on silicon-thermistor thermometers and mercury telluride (HgTe) X-ray absorbers. They used arrays consisting of 32 to 36 pixels, each of which was an independent quantum calorimeter. Between Astro-E and Astro-E2, a new method of making the thermistor was developed that significantly reduced its low-frequency noise. Other fabrication advances made it possible to make reproducible connections between absorbers and thermistors and to fit each thermistor and its thermal isolation under its X-ray absorber, making square arrays feasible.
Through a Small Business Innovation Research (SBIR) contract executed after the Astro-E2 mission, EPIR Technologies Inc. reduced the specific heat of the HgTe absorbers. Additional improvements made to the cooler of the detector heat sink allowed operation at a lower temperature, which further reduced the specific heat. Together, these changes enabled the pixel width to be increased from 0.64 mm to 0.83 mm while still achieving a lower heat capacity, and thus improving the energy resolution. From Astro-E through Astro-H, the energy resolution for X-rays of energy around 6000 eV improved from 11 eV, to 5.5 eV, to 4 eV. No changes to the array design were made between Astro-H and XRISM.
Resolve detector scientist Caroline Kilbourne installing the flight Resolve quantum-calorimeter array into the assembly that provides its electrical, thermal, and mechanical interfaces.NASA GSFC Over the same period, other approaches to quantum-calorimeter arrays optimized for the needs of future missions were developed. The use of superconducting transition-edge sensors (TES) instead of silicon (Si) thermistors led to improved energy resolution, more pixels per array, and multiplexing (a technique that allows multiple signals to be carried on a single wire). Quantum-calorimeter arrays with thousands of pixels are now standard, such as in the NASA contribution to the future European New Advanced Telescope for High-ENergy Astrophysics (newAthena) mission. And quantum calorimeters using paramagnetic thermometers — which unlike TES and Si thermistors require no dissipation of heat in the thermometer for it to be read out — combined with high-density wiring are a promising route for realizing even larger arrays. (See Astrophysics Technology Highlight on these latest developments.)
The Resolve instrument aboard XRISM (X-ray Imaging and Spectroscopy Mission) captured data from the center of galaxy NGC 4151, where a supermassive black hole is slowly consuming material from the surrounding accretion disk. The resulting spectrum reveals the presence of iron in the peak around 6.5 keV and the dips around 7 keV, light thousands of times more energetic that what our eyes can see. Background: An image of NGC 4151 constructed from a combination of X-ray, optical, and radio light.Spectrum: JAXA/NASA/XRISM Resolve. Background: X-rays, NASA/CXC/CfA/J.Wang et al.; optical, Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; radio, NSF/NRAO/VLA Results from Resolve
So, what is Resolve revealing about the Universe? Through spectroscopy alone, Resolve allows us to construct images of complex environments where collections of gas and dust with various attributes exist, emitting and absorbing X-rays at energies characteristic of their various compositions, velocities, and temperatures. For example, in the middle of the galaxy known as NCG 4151 (see figure above), matter spiraling into the central massive black hole forms a circular structure that is flat near the black hole, more donut-shaped further out, and, according to the Resolve data, a bit lumpy. Matter near the black hole is heated up to X-ray-emitting temperatures and irradiates the matter in the circular structure. The Resolve spectrum has a bright narrow emission line (peak) from neutral iron atoms that must be coming from colder matter in the circular structure, because hotter material would be ionized, and would have a different emission signature. Nonetheless, the shape of the iron line needs three components to describe it, each coming from a different lump in the circular structure. The presence of absorption lines (dips) in the spectrum provides further detail about the structure of the infalling matter.
A second example is the detection of X-ray emission by Resolve from the debris of stars that have exploded, such as N132D (see figure below), that will improve our understanding of the explosion mechanism and how the elements produced in stars get distributed, and allow us to infer the type of star each was before ending in a supernova. Elements are identified by their characteristic emission lines, and shifts of those lines via the Doppler effect tell us how fast the material is moving.
XRISM’s Resolve instrument captured data from supernova remnant N132D in the Large Magellanic Cloud to create the most detailed X-ray spectrum of the object ever made. The spectrum reveals peaks associated with silicon, sulfur, argon, calcium, and iron. Inset at right is an image of N132D captured by XRISM’s Xtend instrument.JAXA/NASA/XRISM Resolve and Xtend These results are just the beginning. The rich Resolve data sets are identifying complex velocity structures, rare elements, and multiple temperature components in a diverse ensemble of cosmic objects. Welcome to the quantum calorimeter era! Stay tuned for more revelations!
Project Leads: Dr. Caroline Kilbourne, NASA Goddard Space Flight Center (GSFC), for silicon-thermistor quantum calorimeter development from Astro-E2 through XRISM and early TES development. Foundational and other essential leadership provided by Dr. Harvey Moseley, Dr. John Mather, Dr. Richard Kelley, Dr. Andrew Szymkowiak, Mr. Brent Mott, Dr. F. Scott Porter, Ms. Christine Jhabvala, Dr. James Chervenak (GSFC at the time of the work) and Dr. Dan McCammon (U. Wisconsin).
Sponsoring Organizations and Programs: The NASA Headquarters Astrophysics Division sponsored the projects, missions, and other efforts that culminated in the development of the Resolve instrument.
Explore More
7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
Article 1 day ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
Article 1 day ago 2 min read Hubble Images a Grand Spiral
Article 4 days ago View the full article
-
By NASA
Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth.
Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.
Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.
This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.
Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids.
Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water.
“It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P.
About Kathleen Mandt
But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.
“It was a big surprise and it made us rethink everything,” Mandt said.
Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission.
The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water.
What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.”
Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.
As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.
Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.
“This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said.
By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Explore More
9 min read Towards Autonomous Surface Missions on Ocean Worlds
Article
31 mins ago
1 min read Coming Spring 2025: Planetary Defenders Documentary
ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…
Article
52 mins ago
5 min read What’s Up: December 2024 Skywatching Tips from NASA
Article
1 day ago
Share
Details
Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
-
By NASA
Artist’s concept of “hot Neptune” TOI-3261 b. NASA/JPL-Caltech/K. Miller (Caltech/IPAC) By Grace Jacobs Corban
The Discovery
A Neptune-sized planet, TOI-3261 b, makes a scorchingly close orbit around its host star. Only the fourth object of its kind ever found, the planet could reveal clues as to how planets such as these form.
Key Facts
An international team of scientists used the NASA space telescope, TESS (the Transiting Exoplanet Survey Satellite), to discover the exoplanet (a planet outside our solar system), then made further observations with ground-based telescopes in Australia, Chile, and South Africa. The measurements placed the new planet squarely in the “hot Neptune desert” – a category of planets with so few members that their scarcity evokes a deserted landscape. This variety of exoplanet is similar to our own Neptune in size and composition, but orbits extremely closely to its star. In this case, a “year” on TOI-3261 b is only 21 hours long. Such a tight orbit earns this planet its place in an exclusive group with, so far, only three other members: ultra-short-period hot Neptunes whose masses have been precisely measured.
Details
Planet TOI-3261 b proves to be an ideal candidate to test new computer models of planet formation. Part of the reason hot Neptunes are so rare is that it is difficult to retain a thick gaseous atmosphere so close to a star. Stars are massive, and so exert a large gravitational force on the things around them, which can strip the layers of gas surrounding a nearby planet. They also emit huge amounts of energy, which blow the gas layers away. Both of these factors mean that hot Neptunes such as TOI-3261 b might have started out as much larger, Jupiter-sized planets, and have since lost a large portion of their mass.
By modeling different starting points and development scenarios, the science team determined that the star and planet system is about 6.5 billion years old, and that the planet started out as a much larger gas giant. It likely lost mass, however, in two ways: photoevaporation, when energy from the star causes gas particles to dissipate, and tidal stripping, when the gravitational force from the star strips layers of gas from the planet. The planet also might have formed farther away from its star, where both of these effects would be less intense, allowing it to retain its atmosphere.
The remaining atmosphere of the planet, one of its most interesting features, will likely invite further atmospheric analysis, perhaps helping to unravel the formation history of this denizen of the “hot Neptune desert.” Planet TOI-3261 b is about twice as dense as Neptune, indicating that the lighter parts of its atmosphere have been stripped away over time, leaving only the heavier components. This shows that the planet must have started out with a variety of different elements in its atmosphere, but at this stage, it is hard to tell exactly what. This mystery could be solved by observing the planet in infrared light, perhaps using NASA’s James Webb Space Telescope – an ideal way to see the identifying fingerprints of the different molecules in the planet’s atmosphere. This will not just help astronomers understand the past of TOI-3261 b, but also begin to uncover the physical processes behind all hot, giant planets.
Fun Facts
The first-ever discovery of an ultra-short-period hot Neptune, LTT-9779 b, came in 2020. Since then, TESS discoveries TOI-849 b and TOI-332 b have also joined the elite ultra-short-period hot-Neptune club (with masses that have been precisely measured). Both LTT-9779 b and TOI-849 b are in the queue for infrared observations with the James Webb Space Telescope, potentially broadening our understanding of these planets’ atmospheres in the coming years.
The Discoverers
An international science team led by astronomer Emma Nabbie of the University of Southern Queensland published their paper on the discovery, “Surviving in the Hot Neptune Desert: The Discovery of the Ultrahot Neptune TOI-3261 b,” in The Astronomical Journal in August 2024.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4348-4349: Smoke on the Water
NASA’s Mars rover Curiosity created this composite image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. An onboard process, focus merging, makes a composite of images of the same target — acquired at different focus positions — to bring all (or, as many as possible) features into focus in a single image. Curiosity performed this merge on Oct. 27, 2024, sol 4346 (Martian day 4,346) of the Mars Science Laboratory Mission, at 15:45:47 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Oct. 28, 2024
Before the science team starts planning, we first look at the latest Navcam image downlinked from Curiosity to see where the rover is located. It can be all too easy to get lost in the scenery of the Navcam and find new places in the distance we want to drive towards, but there’s so much beauty in the smaller things. Today I’ve chosen to show a photo from Curiosity’s hand lens camera, MAHLI, that takes photos so close that we can see the individual grains of the rock.
The planning day usually starts by thinking about these smaller features: What rocks are the closest to the rover? What can we shoot with our laser? What instruments can we use to document these features? Today we planned two sols, and the focus of the close-up contact science became a coating of material that in some image stretches looks like a deep-purple color.
We planned lots of activities to characterize this coating including use of the dust removal tool (DRT) and the APXS instrument on a target called “Reds Meadow.” This target will also be photographed by the MAHLI instrument. The team planned a ChemCam LIBS target on “Midge Lake” as well as a passive ChemCam target on “Primrose Lake” to document this coating with a full suite of instruments. Mastcam will then document the ChemCam LIBS target Midge Lake, and take a mosaic of the vertical faces of a few rocks near to the rover called “Peep Sight Peak” to observe the sedimentary structures here. Mastcam will also take a mosaic of “Pinnacle Ridge,” an area seen previously by the rover, from a different angle. ChemCam is rounding off the first sol with two long-distance RMI mosaics to document the stratigraphy of two structures we are currently driving between: Texoli butte and the Gediz Vallis channel.
In the second sol of the plan, after driving about 20 meters (about 66 feet), Curiosity will be undertaking some environmental monitoring activities before an AEGIS activity that automatically selects a LIBS target in our new workspace prior to our planning on Wednesday morning.
Written by Emma Harris, Graduate Student at Natural History Museum, London
Share
Details
Last Updated Oct 30, 2024 Related Terms
Blogs Explore More
2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape
Article
9 hours ago
3 min read Sols 4345-4347: Contact Science is Back on the Table
Article
2 days ago
4 min read Sols 4343-4344: Late Slide, Late Changes
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.