Jump to content

100 days of Cosmic Kiss


Recommended Posts

100_days_of_Cosmic_Kiss_card_full.jpg Video: 00:04:40

English - 100 days of Cosmic Kis

On 11 November 2021, ESA astronaut Matthias Maurer was launched to the International Space Station for his first mission, Cosmic Kiss. Around 100 days later, we reflect on some highlights from space.

Matthias flew to the Station on a SpaceX Crew Dragon alongside NASA astronauts and fellow first-time fliers Kayla Barron and Raja Chari, and NASA spaceflight veteran Tom Marshburn. Collectively known as Crew-3, they were welcomed as members of Expedition 66 by Commander Anton Shkaplerov, cosmonaut Pyotr Dubrov and NASA’s Mark Vande Hei.

While in orbit, Matthias is supporting over 35 European and many more international experiments. The outcomes of these experiments will advance our knowledge in areas ranging from human health to materials science, physics, Earth observation, technology development and more.

Matthias is expected to spend approximately six months in orbit and there are many more highlights to come. Find out more about the science he’s supported to date in this 100 days of Cosmic Kiss science round-up.

Access the related broadcast quality video material.

 

German - 100 Tage Cosmic Kiss

Am 11. November 2021 startete der ESA-Astronaut Matthias Maurer zu seiner ersten Mission "Cosmic Kiss" zur Internationalen Raumstation ISS. Rund 100 Tage später blicken wir auf einige Höhepunkte aus dem Weltall zurück.

Matthias flog an Bord eines SpaceX Crew Dragon zusammen mit den NASA-Astronauten und Erstfliegern Kayla Barron und Raja Chari sowie dem NASA-Raumfahrtveteranen Tom Marshburn zur ISS. Gemeinsam als Crew-3 bekannt, wurden sie von Kommandant Anton Shkaplerov, Kosmonaut Pyotr Dubrov und NASA-Astronaut Mark Vande Hei als Mitglieder der Expedition 66 begrüßt.

Im Orbit unterstützt Matthias über 35 europäische und viele weitere internationale Experimente. Die Ergebnisse dieser Experimente werden unser Wissen in den Bereichen Humanmedizin, Materialwissenschaft, Physik, Erdbeobachtung, Technologieentwicklung und mehr vorantreiben.

Matthias wird voraussichtlich etwa sechs Monate in der Umlaufbahn verbringen, und es werden noch viele weitere Höhepunkte folgen. Bleibt dran und erfahrt mehr über seine Mission auf der Cosmic Kiss Missions-Webseite der ESA.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In the remote wilderness of the Shoria Mountains in southern Siberia, a long-hidden secret has remained untouched for millennia. Far from the reach of modern civilization, a discovery was made that would challenge our understanding of ancient human history. 

      In 2013, a team of 19 researchers, led by Georgy Sidorov, embarked on an expedition to explore this mysterious region. Their destination was Gora Shoria, a mountain towering 3,600 feet above sea level in a remote part of Russia. Intrigued by reports of strange megalithic structures, the team ventured into this secluded terrain. 
      What they found was extraordinary: an immense super-megalith dating back roughly 100,000 years that defied conventional history. These massive stone blocks, later known as the Gornaya Shoria Megaliths, appeared to be made of granite, featuring flat surfaces and precise right angles. The most astounding detail was the weight of the stones, exceeding 3,000 tons—making them the largest megaliths ever discovered. 
      The arrangement of these granite blocks suggested a deliberate design, far beyond what could be explained by natural formations. The blocks were carefully stacked, reaching a height of approximately 140 feet. This raised profound questions: how were such massive stones carved, transported, and assembled in this remote and rugged landscape? 
      Some researchers have speculated about the existence of a pre-flood civilization, a sophisticated society wiped out by a cataclysmic event. 
      Also a deep, narrow vertical shaft was uncovered. The shaft, lined with parallel stone slabs, appeared to be human-made. 
      The walls of the shaft were straight and polished, descending 40 meters (around 130 feet) before opening into a vast underground hall, 36 meters (around 118 feet) high. These walls were constructed from large megalithic blocks, perfectly fitted with minimal gaps. Some of the stones resembled columns, reinforcing the idea of deliberate design. The full explored length of the shaft spanned over 100 meters (approximately 350 feet). 
      The precision and scale of this structure left no doubt that it was an artificial creation of immense proportions. The polished walls and massive blocks bore a striking resemblance to the shafts within the Great Pyramid of Khufu in Egypt, suggesting a level of architectural sophistication that defies conventional explanations.  
      Speculation abounds regarding the shaft’s original purpose. Some believe it served an advanced technological function or was part of a larger, undiscovered structure. The exploration team took over an hour to reach the bottom of the shaft, which required significant climbing expertise and endurance. It is believed that additional chambers and channels, still unexplored, may lie even deeper underground. 
      How could these gigantic 200-ton stone blocks have been assembled with such accuracy, deep underground? What kind of technology was used to construct the shaft and underground chamber?  
      Some researchers have speculated that it may have been part of an ancient factory, a seismological research device, or even an energy generator. Others believe it was the underground portion of a long-lost pyramid that once stood on the surface of the mountain. 
      Despite differing theories, we may wonder what ancient forces or lost civilizations left their mark on this remote corner of the world?
        View the full article
    • By NASA
      Linette Boisvert turned a childhood love of snow into a career as a sea ice scientist studying climate change.
      Name: Linette Boisvert
      Title: Assistant Lab Chief, Cryospheric Sciences Branch, and Deputy Project Scientist for the Aqua Satellite
      Formal Job Classification: Sea Ice Scientist
      Organization: Cryospheric Science Branch, Science Directorate (Code 615)
      “When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives,” said Linette. “One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist.”Photo credit: NASA/Kyle Krabill What do you do and what is most interesting about your role here at Goddard? 
      As a sea ice scientist, I study interactions between the sea ice and the atmosphere. I’m interested in how the changing sea ice conditions and loss of Arctic ice are affecting the atmospheric conditions in the Artic. 
      Why did you become a sea ice scientist? What is your educational background?  
      I grew up in Maryland. When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives. One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist. This also coincided with the Arctic sea ice minimum in 2007, at the time, a record low.
      In 2008, I got a B.S. in environmental science with a minor in math from the University of Maryland, Baltimore County (UMBC). I received my master’s and, in 2013, got a Ph.D. in atmospheric and oceanic sciences from the University of Maryland, College Park.
      How did you come to Goddard?
      My doctorate advisor worked at Goddard. In 2009, he brought me into Goddard’s lab to do my Ph.D. research. I became a post-doctorate in 2013, an assistant research scientist in 2016 (employed by UMD/ESSIC) and, in 2018, a civil servant.
      Dr. Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo credit: NASA/Jeremy Harbeck What is the most interesting field work you do as the assistant lab chief of Goddard’s Cryospheric Sciences Branch?
      From 2018 to 2020, I was the deputy project scientist for NASA’s largest and longest running airborne campaign, Operation IceBridge. This involved flying aircraft with scientific instruments over both land ice and sea ice in the Arctic and Antarctic. Every spring, we would set up a base camp in a U.S. Air Force base in Greenland and fly over parts of the sea ice over Greenland and the Arctic, and in the fall we would base out of places like Punta Arenas, Chile, and Hobart, Australia, to fly over the Antarctic. 
      We would fly low, at 1,500 feet above the surface. It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.
      Being based out of Greenland is very remote. Everything is white. Everything looks like it is closer than it is. You do not have a point of reference for any perspective. It is very quiet. There is no background ambient noise. You do not hear bugs, birds, or cars, just quiet. 
      Our team was about 20 people. Other people live at the base. The campaigns lasted six to eight weeks. I was there about three to four weeks each time. Many of the group had been doing these campaigns for a decade. I felt like I had joined a family. In the evenings, we would often cook dinner together and play games. On days we could not fly, we would go on adventures together like visiting a glacier or hiking. We saw musk ox, Arctic fox, Arctic hares, and seals. 
      How did it feel to become the deputy project scientist for the Aqua satellite, which provided most of the data you used for your doctorate and publications?
      In January 2023, I became the deputy project scientist for the Aqua satellite, which launched in 2002. Aqua measures the Earth’s atmospheric temperature, humidity, and trace gases. Most of my doctorate and publications used data from Aqua to look at how the sea ice loss in the Arctic is allowing for excess heat and moisture from the ocean to move into the atmosphere resulting in a warmer and wetter Arctic. 
      I am honored. I feel like I have come full circle. The team welcomed me into the mission and taught me a lot of things. I am grateful to be working with such a brilliant, hardworking team.
      Who is your science hero?
      My father encouraged me to get a doctorate in science. My father has a doctorate in computer science and math. He works at the National Institute of Standards and Technology. I wanted to be like him when I was growing up. I came close, working at NASA, another part of the federal government. My mother, a French pastry chef, always kept me well fed.
      “We would fly low, at 1,500 feet above the surface,” said Linette. “It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.”Photo credit: NASA/John Sonntag My father is very proud of me. He thinks I am more of a superstar than he was at my age, but I do not believe it. My mother is also proud and continues to keep me well fed.
      Who is your Goddard mentor?
      Claire Parkinson, now an emeritus, was the project scientist for Aqua since its inception. When she retired, she encouraged me to apply for the deputy position. She had confidence in me which gave me the confidence to apply for the position. She is still always available to answer any questions. I am very thankful that she has been there for me throughout my career.
      What advice do you give to those you mentor?
      I recently began advising young scientists; one undergraduate student, two graduate students, and one post-doctoral scientist. We meet weekly as a group and have one-on-one meetings when appropriate. They share their progress on their work. Sometimes we practice presentations they are about to give. 
      It is sometimes hard starting out to think that you are smart because Goddard is full of so many smart people. I tell them that they are just as capable when it comes to their research topic. I tell them that they fit in well with the Goddard community. I want to create a comfortable, respectful, and inclusive environment so that they remain in science. 
      What do you do for fun?
      I enjoy running and paddle boarding with my dog Remi, my long-haired dachshund. I enjoy reading. I love to travel and be around friends and family. But I do not enjoy cooking, so I do not bake French pastries like my mom. 
      Where do you see yourself in five years?
      I hope to continue doing research including field work. It would be great if some of my students finished their studies and joined my lab. I hope that I am still making people proud of me. 
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Hard-working. Smart. Inquisitive. Adventurous. Kind. Happy. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 10, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center Ice & Glaciers People of NASA Explore More
      7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 3 hours ago 5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
      Article 1 week ago 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 2 weeks ago View the full article
    • By NASA
      5 Min Read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark
      The galaxy cluster MACS-J0417.5-1154. Full image below. Credits:
      NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). It’s 7 billion years ago, and the universe’s heyday of star formation is beginning to slow. What might our Milky Way galaxy have looked like at that time? Astronomers using NASA’s James Webb Space Telescope have found clues in the form of a cosmic question mark, the result of a rare alignment across light-years of space.
      “We know of only three or four occurrences of similar gravitational lens configurations in the observable universe, which makes this find exciting, as it demonstrates the power of Webb and suggests maybe now we will find more of these,” said astronomer Guillaume Desprez of Saint Mary’s University in Halifax, Nova Scotia, a member of the team presenting the Webb results.
      Image A: Lensed Question Mark (NIRCam)
      The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. Active star formation, and the face-on galaxy’s remarkably intact spiral shape, indicate that these galaxies’ interaction is just beginning. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary’s University). While this region has been observed previously with NASA’s Hubble Space Telescope, the dusty red galaxy that forms the intriguing question-mark shape only came into view with Webb. This is a result of the wavelengths of light that Hubble detects getting trapped in cosmic dust, while longer wavelengths of infrared light are able to pass through and be detected by Webb’s instruments.
      Astronomers used both telescopes to observe the galaxy cluster MACS-J0417.5-1154, which acts like a magnifying glass because the cluster is so massive it warps the fabric of space-time. This allows astronomers to see enhanced detail in much more distant galaxies behind the cluster. However, the same gravitational effects that magnify the galaxies also cause distortion, resulting in galaxies that appear smeared across the sky in arcs and even appear multiple times. These optical illusions in space are called gravitational lensing.
      The red galaxy revealed by Webb, along with a spiral galaxy it is interacting with that was previously detected by Hubble, are being magnified and distorted in an unusual way, which requires a particular, rare alignment between the distant galaxies, the lens, and the observer — something astronomers call a hyperbolic umbilic gravitational lens. This accounts for the five images of the galaxy pair seen in Webb’s image, four of which trace the top of the question mark. The dot of the question mark is an unrelated galaxy that happens to be in the right place and space-time, from our perspective.
      Image B: Hubble and Webb Side by Side
      Image Before/After In addition to producing a case study of the Webb NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument’s ability to detect star formation locations within a galaxy billions of light-years away, the research team also couldn’t resist highlighting the question mark shape. “This is just cool looking. Amazing images like this are why I got into astronomy when I was young,” said astronomer Marcin Sawicki of Saint Mary’s University, one of the lead researchers on the team. 
      “Knowing when, where, and how star formation occurs within galaxies is crucial to understanding how galaxies have evolved over the history of the universe,” said astronomer Vicente Estrada-Carpenter of Saint Mary’s University, who used both Hubble’s ultraviolet and Webb’s infrared data to show where new stars are forming in the galaxies. The results show that star formation is widespread in both. The spectral data also confirmed that the newfound dusty galaxy is located at the same distance as the face-on spiral galaxy, and they are likely beginning to interact.
      “Both galaxies in the Question Mark Pair show active star formation in several compact regions, likely a result of gas from the two galaxies colliding,” said Estrada-Carpenter. “However, neither galaxy’s shape appears too disrupted, so we are probably seeing the beginning of their interaction with each other.”
      “These galaxies, seen billions of years ago when star formation was at its peak, are similar to the mass that the Milky Way galaxy would have been at that time. Webb is allowing us to study what the teenage years of our own galaxy would have been like,” said Sawicki.
      The Webb images and spectra in this research came from the Canadian NIRISS Unbiased Cluster Survey (CANUCS). The research paper is published in the Monthly Notices of the Royal Astronomical Society.
      Image C: Wide Field – Lensed Question Mark (NIRCam)
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu , Leah Ramsey – lramsey@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: Gravity – Nature’s Magnifying Glass
      VIDEO: What happens when galaxies collide?

      ARTICLE: More about Galaxy Evolution

      VIDEO: Learn more about Galactic Collisions
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      Learn Home New TEMPO Cosmic Data Story… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   3 min read
      New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available
      On May 30th, 2024, NASA and the Center for Astrophysics | Harvard & Smithsonian announced the public release of “high-quality, near real-time air quality data” from NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. The NASA Science Activation program’s Cosmic Data Stories team, led by Harvard University in Cambridge, MA, has since released a new “Data Story” – an interactive, digital showcase of new science imagery, including ideas for exploration and scientific highlights shared in a brief video and narrative text – that provides a quick and easy way for the public to visualize this important, large data set from TEMPO.
      TEMPO allows unprecedented monitoring of air quality down to neighborhood scales, with its hourly daytime scans over North America. Air pollutants like NO2, produced, for example, by the burning of fossil fuels, can trigger significant health issues, especially among people with pre-existing illnesses such as asthma. The interactive views in the TEMPO Data Story provide public access to the same authentic data that scientists use and invite the public to explore patterns in their local air quality. For example, how do NO2 emissions vary in our area throughout the day and week? What are possible sources of NO2 in our community? How does our air quality compare with that of other communities with similar population densities, or with nearby urban or rural communities? TEMPO’s hyper-localized data will allow communities to make informed decisions and take action to improve their air quality.
      The Cosmic Data Story team is grateful to TEMPO scientists, Xiong Liu and Caroline Nowlan, for providing the team with early access to the data and guidance on NO2 phenomena that learners can explore in the data. The TEMPO Data Story, featured on TEMPO’s webpage for the public, adds Earth science data to the portfolio of Cosmic Data Stories that is already making astrophysics data accessible to the public.
      TEMPO Team Atmospheric Physicist from the Harvard-Smithsonian Center for Astrophysics, Caroline Nowlan, had this to say: “TEMPO produces data that are really useful for scientists, but are also important for the general public and policy makers. We are thrilled that the Cosmic Data Stories team has made a tool that allows everyone to explore TEMPO data and learn about pollution across North America and in their own communities.”
      The Cosmic Data Stories project is supported by NASA under cooperative agreement award number 80NSSC21M0002 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A view from the TEMPO Data Story, shows TEMPO’s NO2 data overlaid on a map of North America. A large plume of NO2, caused by large wildfires, arcs from Northern California all the way to Idaho. Other “hot spots” of NO2 are seen over cities across the US, Canada, and Mexico. Users can view any available date, as well as explore some featured dates and locations that describe phenomena of interest that are visible in the data. Share








      Details
      Last Updated Aug 13, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Earth Science Science Activation Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      3 min read Earth Educators Rendezvous with Infiniscope and Tour It


      Article


      1 day ago
      2 min read Astro Campers SCoPE Out New Worlds


      Article


      4 days ago
      2 min read Hubble Spotlights a Supernova


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...