Members Can Post Anonymously On This Site
NASA Remembers Fallen Heroes
-
Similar Topics
-
By NASA
2024 Year in Review – Highlights from NASA in Silicon Valley
by Tiffany Blake
As NASA’s Ames Research Center in California’s Silicon Valley enters its 85th year since its founding, join us as we take a look back at some of our highlights of science, engineering, research, and innovation from 2024.
Ames Arc Jets Play Key Role in Artemis I Orion Spacecraft Heat Shield Findings
A block of Avcoat undergoes testing inside an arc jet test chamber at NASA Ames. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon. photo credit: NASA Researchers at Ames were part of the team tasked to better understand and identify the root cause of the unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA Ames.
Starling Swarm Completes Primary Mission
The four CubeSat spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. Image credit: NASA After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations in low Earth orbit, including distributing and sharing important information and autonomous decision making.
Another Step Forward for BioNutrients
Research scientists Sandra Vu, left, Natalie Ball, center, and Hiromi Kagawa, right, process BioNutrients production packs.Image credit: NASA NASA’s BioNutrients entered its fifth year in its mission to investigate how microorganisms can produce on-demand nutrients for astronauts during long-duration space missions. Keeping astronauts healthy is critical and as the project comes to a close, researchers have processed production packs on Earth on the same day astronauts processed production packs in space on the International Space Station to demonstrate that NASA can produce nutrients after at least five years in space, providing confidence it will be capable of supporting crewed missions to Mars.
Hyperwall Upgrade Helps Scientists Interpret Big Data
The newly upgraded hyperwall visualization system provides four times the resolution of the previous system. Image credit: NASA/Brandon Torres Navarrete Ames upgraded its powerful hyperwall system, a 300-square foot wall of LCD screens with over a billion pixels to display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data and advance the agency’s missions and research.
Ames Contributions to NASA Artificial Intelligence Efforts
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Image credit: NASA/Bill Ingalls Ames contributes to the agency’s artificial intelligence work through ongoing research and development, agencywide collaboration, and communications efforts. This year, NASA announced David Salvagnini as its inaugural chief artificial intelligence officer and held the first agencywide town hall on artificial intelligence sharing how the agency is safely using and developing artificial intelligence to advance missions and research.
Advanced Composite Solar Sail System Successfully Launches, Deploys Sail
Illustration: NASA NASA’s Advanced Composite Solar Sail System successfully launched from Māhia, New Zealand, in April, and successfully deployed its sail in August to begin mission operations. The small satellite represents a new future in solar sailing, using lightweight composite booms to support a reflective polymer sail that uses the pressure of sunlight as propulsion.
Understanding Our Planet
Samuel Suleiman, an instructor on NASA’s OCEANOS student training program, gathers loose corals to place around an endangered coral species to help attract fish and other wildlife, giving the endangered coral a better chance of survivalphoto credit: NASA/Milan Loiacono In 2024, Ames researchers studied Earth’s oceans and waterways from multiple angles – from supporting NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission to bringing students in Puerto Rico experiences in oceanography and the preservation of coral reefs. Working with multiple partners, our scientists and engineers helped inform ecosystem management by joining satellite measurements of Earth with animal tracking data. In collaboration with the U.S. Geological Survey, a NASA team continued testing a specialized instrument package to stay in-the-know about changes in river flow rates.
Revealing the Mysteries of Asteroids in Our Solar System
Image credit: NASA Ames researchers used a series of supercomputer simulations to reveal a potential new explanation for how the moons of Mars may have formed: The first step, the findings say, may have involved the destruction of an asteroid.
Using NASA’s powerful James Webb Space Telescope, another Ames scientist helped reveal the smallest asteroids ever found in the main asteroid belt.
Ames Helps Emerging Space Companies ‘Take the Heat’
A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert.Image credit: Varda Space Industries/John Kraus A heat shield material invented and made at Ames helped to safely return a spacecraft containing the first product processed on an autonomous, free-flying, in-space manufacturing platform. February’s re-entry of the spacecraft from Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, marked the first time a NASA-manufactured thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), ever returned from space.
Team Continues to Move Forward with Mission to Learn More about Our Star
This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016.Image credit: NASA/SDO/AIA/LMSAL HelioSwarm’s swarm of nine spacecraft will provide deeper insights into our universe and offer critical information to help protect astronauts, satellites, and communications signals such as GPS. The mission team continues to work toward launching in 2029.
CAPSTONE Continues to Chart a New Path Around the Moon
CAPSTONE revealed in lunar Sunrise: CAPSTONE will fly in cislunar space – the orbital space near and around the Moon. The mission will demonstrate an innovative spacecraft-to-spacecraft navigation solution at the Moon from a near rectilinear halo orbit slated for Artemis’ Gateway.Illustration credit: NASA Ames/Daniel Rutter The microwave sized CubeSat, CAPSTONE, continues to fly in a cis-lunar near rectilinear halo orbit after launching in 2022. Flying in this unique orbit continues to pave the way for future spacecraft and Gateway, a Moon-orbiting outpost that is part of NASA’s Artemis campaign, as the team continues to collect data.
NASA Moves Drone Package Delivery Industry Closer to Reality
A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today. Image credit: NASA Ames/Dominic Hart NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area.
NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area.
NASA Technologies Streamline Air Traffic Management Systems
This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.Illustration credit: NASA Managing our busy airspace is a complex and important issue, ensuring reliable and efficient movement of commercial and public air traffic as well as autonomous vehicles. NASA, in partnership with AeroVironment and Aerostar, demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. The agency also saw continued fuel savings and reduction in commercial flight delays at Dallas Fort-Worth Airport, thanks to a NASA-developed tool that allows flight coordinators to identify more efficient, alternative takeoff routes.
Small Spacecraft Gathers Big Solar Storm Data from Deep Space
Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit.Illustration credit: NASA Ames/Daniel Rutter BioSentinel – a small satellite about the size of a cereal box – is currently more than 30 million miles from Earth, orbiting our Sun. After launching aboard NASA’s Artemis I more than two years ago, BioSentinel continues to collect valuable information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense. In May 2024, the satellite was exposed to a coronal mass ejection without the protection of our planet’s magnetic field and gathered measurements of hazardous solar particles in deep space during a solar storm.
NASA, FAA Partner to Develop New Wildland Fire Technologies
Artist’s rendering of remotely piloted aircraft providing fire suppression, monitoring and communications capabilities during a wildland fire. Illustration credit: NASA NASA researchers continued to develop and test airspace management technologies to enable remotely-piloted aircraft to fight and monitor wildland fires 24 hours a day.
The Advanced Capabilities for Emergency Response Operations (ACERO) project seeks to use drones and advanced aviation technologies to improve wildland fire coordination and operations.
NASA and Forest Service Use Balloon to Help Firefighters Communicate
The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Image credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar The Strategic Tactical Radio and Tactical Overwatch (STRATO) technology is a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires. Providing cellular communication from above can improve firefighter safety and firefighting efficiency.
A Fully Reimagined Visitor Center
The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public.Image credit: NASA Ames/Don RIchey The NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration.
Ames Collaborations in the Community
Former NASA astronauts Yvonne Cagle and Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research effortsImage credit: NASA Ames/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4. During the visit with patients, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
Ames and the University of California, Berkeley, expanded their partnership, organizing workshops to exchange on their areas of technical expertise, including in Advanced Air Mobility, and to develop ideas for the Berkeley Space Center, an innovation hub proposed for development at Ames’ NASA Research Park. Under a new agreement, NASA also will host supercomputing resources for UC Berkeley, supporting the development of novel computing algorithms and software for a wide variety of scientific and technology areas.
NASA’s Ames Research Center Celebrates 85 Years of Innovation
by Rachel Hoover
Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.”
The NACA Ames laboratory in 1944.Image credit: NASA Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research:
“My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.Image credit: NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
“Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars.
“As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.”
When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
Ames Aeronautical Laboratory.Image credit: NACA Today Marks the Retirement of the Astrogram Newsletter
by Astrid Albaugh
For 66 years, the Astrogram has told the story of NASA’s Ames Research Center. Over those six-plus decades, the newsletter has documented hundreds of missions led by Ames, the progression of Hangar One’s reclamation, space shuttle launches with Ames’ payloads aboard them, countless VIP visits, and everything in between.
Ames published the first edition of the Astrogram in October 1958, coinciding with the transition of the center from its original incarnation as the National Advisory Committee for Aeronautics Ames Aeronautical Laboratory to a National Aeronautics and Space Administration (NASA) research center.
The newsletter has evolved over time, alongside the center. From October 1958 through January 2016, the Astrogram was published in print, before a digital edition was developed. In January 2016, the Astrogram transitioned to a digital-only format. Below are examples of some of the Astrogram issues from over the years. More are forthcoming from 1998 and prior once they are retrieved from the archives.
October 2014 Astrogram September 2010 Astrogram I have served as the editor of the Astrogram since February 1998. Over the past quarter century, it has been an interesting, and sometimes quite challenging, task for me to capture the breadth and depth of Ames’s story and ensure that we always published the newsletter on time. I still remember trekking over to the center’s imaging office to review the physical negatives and images that the Ames photographers had taken of events onsite and select the most compelling photos. I used a very early version of visual design software to craft the layout. When the paper was completed, I’d file it onto a CD and then hand it to the courier who would drive from the San Francisco printshop to pick it up from me. Once and awhile, someone would request to have an additional feature added, requiring multiple trips up the 101 and back. Sometimes I’d come in on the weekends to work on the paper, due to late submissions, much to the chagrin of my kids.
July 2007 Astrogram It has been a pleasure serving as the editor over the past quarter century, almost as many years as my kids are old. A person once asked me if I had changed my name to Astrid since it’s so like the word Astrogram. Any relationship between the newsletter and my name is simply serendipity. I have enjoyed being behind the scenes, mostly working diligently at my computer. Many at Ames know my name because of the newsletter but may have never met me in person. It’s been amusing sometimes when I encounter someone who can’t put a finger as to why they knew my name but didn’t recognize me standing in front of them. Their usual response when they realized why they know me was, “Ah, Astrid of the Astrogram.”
March 20, 1998 Astrogram Just as NASA innovates, the content of the Astrogram has to innovate as well. Many of the stories that you used to read in the Astrogram, you can now find on our NASA Ames web page here. If you would like to access past, archived issues of the Astrogram, going back to 1958, please consult the Ames Research Center Archives. I will continue to help tell Ames’s story, just using new platforms.
Whether this is your first issue or you have been an Astrogram supporter for decades, thank you for reading!
– Astrid of the Astrogram officially signing off
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
“It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
“This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.
Share
Details
Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
Learn more about NASA’s Near Space Network:
https://www.nasa.gov/near-space-network
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Maryland
757-824-2958
jeremy.l.eggers@nasa.gov
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
“This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
“One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
“With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond.
For more information about the Deep Space Network, visit:
https://www.nasa.gov/communicating-with-missions/dsn
News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-179
Share
Details
Last Updated Dec 20, 2024 Related Terms
Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
From left to right, Ambassador of the Principality of Liechtenstein to the United States of America Georg Sparber, Director of the Office for Communications of the Principality of Liechtenstein Dr. Rainer Schnepfleitner, NASA Deputy Administrator Pam Melroy, and Ambassador Extraordinary and Plenipotentiary to the Swiss Confederation and to the Principality of Liechtenstein Scott Miller, pose for a group photo during an Artemis Accords signing ceremony, Friday, Dec. 20, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Principality of Liechtenstein is the 52nd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Keegan Barber Liechtenstein signed the Artemis Accords Friday during a ceremony hosted by NASA Deputy Administrator Pam Melroy at the agency’s headquarters in Washington, becoming the 52nd nation to commit to the responsible exploration of space for all humanity.
“Today, as Liechtenstein signs the Artemis Accords, we take another step forward together, united by the promise of international cooperation and discovery,” said Melroy. “Liechtenstein’s commitment strengthens our vision, where space is explored with peace, transparency, and sustainability as guiding principles. With each new signatory, the Artemis Accords community adds fresh energy and capabilities to ensure the benefits of space reach the entire world.”
Director of Liechtenstein’s Office for Communications Rainer Schnepfleitner signed the Artemis Accords on behalf of Liechtenstein. The Ambassador of the Principality of Liechtenstein to the United States Georg Sparber and U.S. Ambassador to the Swiss Confederation and the Principality of Liechtenstein Scott Miller also participated in the event.
“With its participation in the Artemis Accords, Liechtenstein looks forward to advancing space exploration among a strong group of like-minded countries committed to the peaceful use of space for the benefit of all humanity,” Sparber said.
The United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords in 2020, identifying a set of principles promoting the beneficial use of space for humanity. Since then, signatories have expanded to represent a quarter of the world’s countries, with 19 countries signing in 2024.
In addition to an increase in numbers, the Artemis Accords signatories, representing every region of the world, continued to build consensus this year and make significant progress in implementing the accords principles.
NASA co-chaired the Artemis Accords Principals’ Meeting in October, which brought together 42 nations and furthered discussions on the safe and responsible use of space. They agreed on recommendations for non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration of space objects to advance implementation.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Amber Jacobson / Elizabeth Shaw
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Dec 20, 2024 LocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.