Jump to content

California Students to Hear from NASA Astronauts Aboard Space Station


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-9 mission, including NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, along with Roscosmos cosmonaut Aleksandr Gorbunov, pose for a photo aboard the International Space StationNASA Media are invited to hear from NASA’s SpaceX Crew-9 astronauts during a news conference beginning at 11:55 a.m. EST, Tuesday, March 4, from the International Space Station.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore will discuss their return to Earth on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m. Monday, March 3, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the news conference no later than 15 minutes prior to the start of the call. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
      Crew-9 contributed to hundreds of scientific experiments, including swabbing the station’s exterior for microbes, printing 3D medical devices, and studying how moisture, orbital altitude, and ultraviolet light affect plant growth.
      The crew will depart the space station after the arrival of Crew-10 and a short handover period. Ahead of Crew-9’s return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.
      The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Follow updates on the Crew-9 mission at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Astronauts Barry E. Wilmore International Space Station (ISS) Sunita L. Williams
      View the full article
    • By NASA
      Intuitive Machines-2: Delivering Science and Tech to the Moon (NASA Mission Trailer)
    • By NASA
      Intuitive Machines-2 Launch to the Moon (Official NASA Broadcast)
    • By NASA
      6 Min Read NASA Stennis Flashback: Learning About Rocket Engine Smoke for Safe Space Travel
      An image shows engineers at an early version of the test stand at the Diagnostic Testbed Facility. From 1988 to the mid-1990s, NASA Stennis engineers operated the facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. Credits: NASA/Stennis NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site. More than 35 years ago, it also served as a hands-on classroom for NASA engineers seeking to improve the efficiency of space shuttle main engines.
      From 1988 to the mid-1990’s, NASA Stennis engineers operated a Diagnostic Test Facility to conduct rocket engine plume exhaust diagnostics and learn more about the space shuttle main engine combustion process. The effort also laid the groundwork for the frontline research-and-development testing conducted at the center today.
      “The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team and of its willingness to support the nation’s space exploration program in all ways needed and possible,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate.
      The Diagnostic Test Facility work is just another example of the can-do, will-do attitude of the NASA Stennis team…
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      Tests conducted at the Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics. NASA/Stennis An image shows the Diagnostic Testbed Facility test stand data acquisition trailer. NASA/Stennis The Need
      Envision a rocket or space vehicle launching into the sky. A trail of bright exhaust, known as the engine plume, follows. As metals wear down in the engines from the intense heat of the combustion process, the flame glows with colors, some visible, such as orange or yellow, and others undetectable by the human eye.
      The colors tell a story – about the health and operation of the engine and its components. For space shuttle main engines, which flew on multiple missions, engineers needed to understand that story, much as a doctor needs to understand the condition of a human body during checkup, to ensure future engine operation.
      Where better place to study such details than the nation’s premier propulsion test site? Paging NASA Stennis.
      An image shows the rocket motor and thruster at the Diagnostic Testbed Facility. NASA/Stennis An image shows the Diagnostic Testbed Facility blended team of NASA personnel and contractors. Kneeling, left to right, is Brantly Adams (NASA), Felix Bircher (Sverdrup Technology), Dennis Butts (Sverdrup Technology), and Nikki Raines (Sverdrup Technology). Standing, left to right, NASA astronaut John Young, Greg Sakala (Sverdrup Technology), Barney Nokes (Sverdrup Technology), John Laboda (Sverdrup Technology), Glenn Varner (NASA), Stan Gill (NASA), Bud Nail (NASA), Don Sundeen (Sverdrup Technology), NASA astronaut John Blaha.NASA/Stennis The Facility
      NASA Stennis has long enabled and supported innovative and collaborative work to benefit both the agency and the commercial space industry. When NASA came calling in the late 1980s, site engineers went to work on a plan to study space shuttle main engine rocket exhaust.
      The concept for an enabling structure about the size of a home garage was born in October 1987. Five months later, construction began on a Diagnostic Testbed Facility to provide quality research capabilities for studying rocket engine exhaust and learning more about the metals burned off during hot fire.
      The completed facility featured a 1,300-square-foot control and data analysis center, as well as a rooftop observation deck. Small-scale infrastructure was located nearby for testing a 1,000-pound-thrust rocket engine that simulated the larger space shuttle main engine. The 1K engine measured about 2 feet in length and six inches in diameter. Using a small-scale engine allowed for greater flexibility and involved less cost than testing the much-larger space shuttle engine.
      An image shows Sverdrup Technology’s Robert Norfleet as he preps the dopant injection system for testing at the Diagnostic Testbed Facility. The goal of the facility was to inject known metals and materials in a chemical form and then look at what emissions were given off. During one test, generally a six or 12 second test, operators would inject three known dopants, or substances, and then run distilled water between each test to clean out the system.NASA/Stennis An image shows engineers Stan Gill, Robert Norfleet, and Elizabeth Valenti in the Diagnostic Testbed Facility test control center. NASA/Stennis The Process
      Engineers could quickly conduct multiple short-duration hot fires using the smaller engine. A six-second test provided ample time to collect data from engine exhaust that reached as high as 3,900 degrees Fahrenheit.
      Chemical solutions simulating engine materials were injected into the engine combustion chamber for each hot fire. The exhaust plume then was analyzed using a remote camera, spectrometer, and microcomputers to determine what colors certain metals and elements emit when burning.
      Each material produced a unique profile. By matching the profiles to the exhaust of space shuttle main engine tests conducted at NASA Stennis, determinations could be made about which engine components were undergoing wear and what maintenance was needed.
      We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work…It was a very good learning experience.
      Glenn Varner
      NASA Stennis Engineer
      The Benefits
      The Diagnostic Testbed Facility played a critical safety role for engine operations and also provided a real-time opportunity for NASA Stennis engineers to learn about exhaust diagnostics.
      Multiple tests were conducted. The average turnaround time between hot fires was 18 to 20 minutes with the best turnaround from one test to another taking just 12 minutes. By January 1991, the facility had recorded a total of 588 firings for a cumulative 3,452 seconds.
      As testing progressed, the facility team evolved into a collection of experts in plume diagnostics. Longtime NASA Stennis engineer Glenn Varner serves as the mechanical operations engineer at the Thad Cochran Test Stand, where he contributed to the successful testing of the first SLS (Space Launch System) core stage onsite.
      However, much of Varner’s hands-on experience came at the Diagnostic Test Facility. “We learned about purging, ignition, handling propellants, high-pressure gases, and all the components you had to have to make it work,” he said. “It was a very good learning experience.”
      An image shows the Diagnostic Testbed Facility team working in the test control center. Seated, left to right, is Steve Nunez, Glenn Varner, Joey Kirkpatrick. Standing, back row left to right, is Scott Dracon and Fritz Policelli. Vince Pachel is pictured standing wearing the headset. NASA/Stennis The physical remnants of the Diagnostic Testbed Facility are barely recognizable now, but that spirit and approach embodied by that effort and its teams continues in force at the center.
      joe schuyler
      NASA Stennis Engineering and Test Directorate Director
      The Impact
      The Diagnostic Testbed Facility impacted more than just those engineers involved in the testing. Following the initial research effort, the facility underwent modifications in January 1993. Two months later, facility operators completed a successful series of tests on a small-scale liquid hydrogen turbopump for a California-based aerospace company.
      The project marked an early collaboration between the center and a commercial company and helped pave the way for the continued success of the NASA Stennis E Test Complex. Building on Diagnostic Testbed Facility knowledge and equipment, the NASA Stennis complex now supports multiple commercial aerospace projects with its versatile infrastructure and team of propulsion test experts.
      “The physical remnants of the Diagnostic Testbed Facility are barely recognizable now,” Schuyler said. “But that spirit and approach embodied by that effort and its teams continues in force at the center.”
      Additional Information
      NASA Stennis has leveraged hardware and expertise from the Diagnostic Testbed Facility to provide benefit to NASA and industry for two decades and counting.
      The facility’s thruster, run tanks, valves, regulators and instrumentation were used in developing the versatile four-stand E Test Complex at NASA Stennis that includes 12 active test cell positions capable of various component, engine, and stage test activities.
      “The Diagnostic Testbed Facility was the precursor to that,” said NASA engineer Glenn Varner. “Everything but the structure still in the grass moved to the E-1 Test Stand, Cell 3. Plume diagnostics was part of the first testing there.”
      When plume diagnostic testing concluded at E-1, equipment moved to the E-3 Test Stand, where the same rocket engine used for the Diagnostic Testbed Facility has since performed many test projects.
      The Diagnostic Testbed Facility thruster also has been used for various projects at E-3, most recently in a project for the exploration upper stage being built for use on future Artemis missions. 
      In addition to hardware, engineers who worked at the Diagnostic Testbed Facility also moved on to support E Test Complex projects. There, they helped new NASA engineers learn how to handle gaseous hydrogen and liquid hydrogen propellants. Engineers learned about purging, ignition, and handling propellants and all the components needed for a successful test.
      “From an engineering perspective, the more knowledge you have of the processes and procedures to make propulsion work, the better off you are,” Varner said. “It applied then and still applies today. The Diagnostic Testbed Facility contributed to the future development of NASA Stennis infrastructure and expertise.”
      Share
      Details
      Last Updated Feb 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone
      Article 7 months ago 4 min read Stennis Flashback: NASA Test Series Leads to Bold Space Shuttle Flight
      It may have been small, but the white puff of smoke exiting the B-2 Test…
      Article 2 years ago Keep Exploring Discover More Topics From NASA Stennis
      NASA’s Stennis Space Center History
      NASA Stennis Images
      NASA Stennis Fact Sheets
      NASA Stennis Front Door
      View the full article
    • By NASA
      Acting Director of NASA’s Johnson Space Center, Steve Koerner. Credit: NASA/Norah Moran NASA has selected Stephen Koerner as acting director of Johnson Space Center. Koerner previously served as Johnson’s deputy director.
      “It is an honor to accept my new role as acting director for Johnson,” Koerner said. “Our employees are key to our nation’s human spaceflight goals. I am continually impressed with what our workforce accomplishes and am proud to be named the leader of such an incredible team dedicated to mission excellence.”
      Koerner previously served as deputy director of NASA Johnson beginning in July 2021, overseeing strategic workforce planning, serving as Designated Agency Safety Health Officer (DASHO), and supporting the Johnson Center Director in mission reviews. Before his appointment to deputy director, Koerner served as director of the Flight Operations Directorate (FOD) for two years. In that role, he was responsible for selecting and protecting astronauts, and for the planning, training, and execution of human space flight and aviation missions. He managed an annual budget of $367 million, 600 civil servants and military personnel, and 2300 contractor personnel.  He oversaw the Astronaut Office, the Flight Director Office, the Mission Control Center, human spaceflight training facilities, and Johnson’s Aviation Operations Division. During this tenure he was also responsible for FOD’s flight readiness of the first commercial human spaceflight mission, ushering in a new era of domestic launch capability and the return of American astronauts launching from American soil. 
      Prior to assuming his position as director of Flight Operations, Koerner served in several senior executive roles, including:
      Johnson Space Center Associate Director from 2018 to 2019 Johnson Space Center Chief Financial Officer (CFO) from 2017 to 2018 Deputy Director of Flight Operations from 2014 to 2017 Deputy Director Mission Operations from 2007 to 2014 Koerner joined Johnson full-time in 1992. He has extensive operations experience including serving as an environmental systems space shuttle flight controller, where he supported 41 space shuttle flights in Mission Control. Since that time, he has served in a series of progressively more responsible positions, including lead for two International Space Station flight control groups, chief of the space station’s Data Systems Flight Control Branch, chief of the Mission Operations Directorate’s Management Integration Office, and as the Mission Operation Directorate’s manager for International Space Station operations.
      Additional special assignments throughout his career include:
      Project manager for Johnson’s Crew Exploration Vehicle Avionics Integration Lab (June 2007 –June 2008) Member of NASA’s Human Exploration Framework Team (April 2010 –October 2010) Member of NASA’s Standing Review Board that provided an independent assessment at life cycle review milestones for the Multi-Purpose Crew Vehicle Program, the Space Launch System Program and the Ground Systems Development and Operations Program (October 2011 – August 2014) Lead of NASA’s Mission Operations Capability Team (October 2015 –April 2017) “Steve has an accomplished career serving human spaceflight. His vision and dedication to the Johnson workforce makes him the perfect person to lead the Johnson team forward as acting director,” said Vanessa Wyche, NASA acting associate administrator. “Steve is an asset to the center and the agency—as both a proven technical expert and a leader.”
      Throughout his career, Koerner has been recognized for outstanding technical achievements and leadership, receiving two Superior Accomplishment Awards, the Outstanding Leadership Medal, the Johnson Space Center Director’s Commendation Award, two group achievement awards, the Exceptional Service Medal, and the Presidential Rank Award.
      Koerner is a native of Stow, Ohio. He earned a bachelor’s degree in mechanical engineering from the University of Akron in Ohio, and a master’s degree in business administration from LeTourneau University in Longview, Texas.
      View the full article
  • Check out these Videos

×
×
  • Create New...