Members Can Post Anonymously On This Site
Mega iceberg released 152 billion tonnes of freshwater
-
Similar Topics
-
By NASA
NASA’s work, including its Moon to Mars exploration approach, is advancing science and technology for the Artemis Generation, while also driving significant economic growth across the United States, the agency announced Thursday.
In its third agencywide economic impact report, NASA highlighted how its Moon to Mars activities, climate change research and technology development, and other projects generated more than $75.6 billion in economic output across all 50 states and Washington, D.C., in fiscal year 2023.
“To invest in NASA is to invest in American workers, American innovation, the American economy, and American economic competitiveness,” says NASA Administrator Bill Nelson. “Our work doesn’t just expand our understanding of the universe — it fuels economic growth, inspires future generations, and improves our quality of life. As we embark on the next great chapter of exploration, we are proud to help power economic strength, job creation, scientific progress, and American leadership on Earth, in the skies, and in the stars.”
Combined, NASA’s missions supported 304,803 jobs nationwide, and generated an estimated $9.5 billion in federal, state, and local taxes throughout the United States.
The study found NASA’s Moon to Mars activities generated more than $23.8 billion in total economic output and supported an estimated 96,479 jobs nationwide. For investments in climate research and technology, the agency’s activities generated more than $7.9 billion in total economic output and supported an estimated 32,900 jobs in the U.S.
Additional key findings of the study include:
Every state in the country benefits economically through NASA activities. Forty-five states have an economic impact of more than $10 million. Of those 45 states, eight have an economic impact of $1 billion or more. The agency’s Moon to Mars initiative, which includes the Artemis missions, generated nearly $2.9 billion in tax revenue. These activities provided about 32% of NASA’s economic impact. The agency’s investments in climate change research and technology generated more than $1 billion in tax revenue. Approximately 11% of NASA’s economic impacts are attributable to its investments in climate change research and technology. NASA had more than 644 active international agreements for various scientific research and technology development activities in the 2023 fiscal year. The International Space Station, representing 15 countries and five space agencies, has a predominant role in the agency’s international partnerships. In fiscal year 2023, NASA oversaw 2,628 active domestic and international non-procurement partnership agreements, which included 629 new domestic and 109 new international agreements, active partnerships with 587 different non-federal partners across the U.S., and partnerships in 47 of 50 states. NASA Spinoffs, which are public products and processes that are developed with NASA technology, funding, or expertise, provide a benefit to American lives beyond dollars and jobs. As of result of NASA missions, our fiscal year 2023 tech transfer activities produced 1,564 new technology reports, 40 new patent applications, 69 patents issued, and established 5,277 software usage agreements. Scientific research and development, which fuels advancements in science and technology that can help improve daily life on Earth and for humanity, is the largest single-sector benefitting from NASA’s work, accounting for 19% of NASA’s total economic impact. The study was conducted by the Nathalie P. Voorhees Center for Neighborhood and Community Improvement at the University of Illinois at Chicago.
To review the full report, visit:
https://go.nasa.gov/3NEtUIq
-end-
Meira Bernstein / Melissa Howell
Headquarters, Washington
202-615-1747 / 202-961-6602
meira.b.bernstein@nasa.gov / melissa.e.howell@nasa.gov
Share
Details
Last Updated Oct 24, 2024 LocationNASA Headquarters View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy.
ESA (the European Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion.
The new images were released at the International Astronautical Congress in Milan on Oct. 15.
The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon.
The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made.
https://www.youtube.com/watch?v=86ZCsUfgLRQ Dive into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe.
“We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team.
Galaxies Galore
Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away.
This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.”
Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way.
The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026.
NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more.
More About Euclid
Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
For more information about Euclid go to:
https://www.nasa.gov/mission_pages/euclid/main/index.html
For more information about Roman, go to:
https://roman.gsfc.nasa.gov
News Media Contacts
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
ESA Media Relations
media@esa.int
2024-141
Share
Details
Last Updated Oct 15, 2024 Related Terms
Euclid Astrophysics Dark Energy Dark Matter Galaxies Jet Propulsion Laboratory The Universe Explore More
8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
Article 2 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch
Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
NASA’s Mini BurstCube Mission Detects Mega Blast
The shoebox-sized BurstCube satellite has observed its first gamma-ray burst, the most powerful kind of explosion in the universe, according to a recent analysis of observations collected over the last several months.
“We’re excited to collect science data,” said Sean Semper, BurstCube’s lead engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s an important milestone for the team and for the many early career engineers and scientists that have been part of the mission.”
The event, called GRB 240629A, occurred on June 29 in the southern constellation Microscopium. The team announced the discovery in a GCN (General Coordinates Network) circular on August 29.
BurstCube, trailed by another CubeSat named SNOOPI (Signals of Opportunity P-band Investigation), emerges from the International Space Station on April 18, 2024. NASA/Matthew Dominick BurstCube deployed into orbit April 18 from the International Space Station, following a March 21 launch.
The mission was designed to detect, locate, and study short gamma-ray bursts, brief flashes of high-energy light created when superdense objects like neutron stars collide. These collisions also produce heavy elements like gold and iodine, an essential ingredient for life as we know it.
BurstCube is the first CubeSat to use NASA’s TDRS (Tracking and Data Relay Satellite) system, a constellation of specialized communications spacecraft. Data relayed by TDRS (pronounced “tee-driss”) help coordinate rapid follow-up measurements by other observatories in space and on the ground through NASA’s GCN.
BurstCube also regularly beams data back to Earth using the Direct to Earth system — both it and TDRS are part of NASA’s Near Space Network.
After BurstCube deployed from the space station, the team discovered that one of the two solar panels failed to fully extend. It obscures the view of the mission’s star tracker, which hinders orienting the spacecraft in a way that minimizes drag. The team originally hoped to operate BurstCube for 12-18 months, but now estimates the increased drag will cause the satellite to re-enter the atmosphere in September.
“I’m proud of how the team responded to the situation and is making the best use of the time we have in orbit,” said Jeremy Perkins, BurstCube’s principal investigator at Goddard. “Small missions like BurstCube not only provide an opportunity to do great science and test new technologies, like our mission’s gamma-ray detector, but also important learning opportunities for the up-and-coming members of the astrophysics community.”
BurstCube is led by Goddard. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.
Download high-resolution photos and videos of BurstCube
By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUnvierse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Sep 03, 2024 Related Terms
Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Goddard Space Flight Center Small Satellite Missions The Universe View the full article
-
By NASA
4 min read
New NASA Software Simulates Science Missions for Observing Terrestrial Freshwater
A map describing freshwater accumulation (blue) and loss (red), using data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites. A new Observational System Simulation Experiment (OSSE) will help researchers design science missions dedicated to monitoring terrestrial freshwater storage. Image Credit: NASA Image Credit: NASA From radar instruments smaller than a shoebox to radiometers the size of a milk carton, there are more tools available to scientists today for observing complex Earth systems than ever before. But this abundance of available sensors creates its own unique challenge: how can researchers organize these diverse instruments in the most efficient way for field campaigns and science missions?
To help researchers maximize the value of science missions, Bart Forman, an Associate Professor in Civil and Environmental Engineering at the University of Maryland, and a team of researchers from the Stevens Institute of Technology and NASA’s Goddard Space Flight Center, prototyped an Observational System Simulation Experiment (OSSE) for designing science missions dedicated to monitoring terrestrial freshwater storage.
“You have different sensor types. You have radars, you have radiometers, you have lidars – each is measuring different components of the electromagnetic spectrum,” said Bart Forman, an Associate Professor in Civil and Environmental Engineering at the University of Maryland. “Different observations have different strengths.”
Terrestrial freshwater storage describes the integrated sum of freshwater spread across Earth’s snow, soil moisture, vegetation canopy, surface water impoundments, and groundwater. It’s a dynamic system, one that defies traditional, static systems of scientific observation.
Forman’s project builds on prior technology advancements he achieved during an earlier Earth Science Technology Office (ESTO) project, in which he developed an observation system simulation experiment for mapping terrestrial snow.
It also relies heavily on innovations pioneered by NASA’s Land Information System (LIS) and NASA’s Trade-space Analysis Tool for Designing Constellations (TAT-C), two modeling tools that began as ESTO investments and quickly became staples within the Earth science community.
Forman’s tool incorporates these modeling programs into a new system that provides researchers with a customizable platform for planning dynamic observation missions that include a diverse collection of spaceborne data sets.
In addition, Forman’s tool also includes a “dollars-to-science” cost estimate tool that allows researchers to assess the financial risks associated with a proposed mission.
Together, all of these features provide scientists with the ability to link observations, data assimilation, uncertainty estimation, and physical models within a single, integrated framework.
“We were taking a land surface model and trying to merge it with different space-based measurements of snow, soil moisture, and groundwater to see if there was an optimal combination to give us the most bang for our scientific buck,” explained Forman.
While Forman’s tool isn’t the first information system dedicated to science mission design, it does include a number of novel features. In particular, its ability to integrate observations from spaceborne passive optical radiometers, passive microwave radiometers, and radar sources marks a significant technology advancement.
Forman explained that while these indirect observations of freshwater include valuable information for quantifying freshwater, they also each contain their own unique error characteristics that must be carefully integrated with a land surface model in order to provide estimates of geophysical variables that scientists care most about.
Forman’s software also combines LIS and TAT-C within a single software framework, extending the capabilities of both systems to create superior descriptions of global terrestrial hydrology.
Indeed, Forman stressed the importance of having a large, diverse team that features experts from across the Earth science and modeling communities.
“It’s nice to be part of a big team because these are big problems, and I don’t know the answers myself. I need to find a lot of people that know a lot more than I do and get them to sort of jump in and roll their sleeves up and help us. And they did,” said Forman.
Having created an observation system simulation experiment capable of incorporating dynamic, space-based observations into mission planning models, Forman and his team hope that future researchers will build on their work to create an even better mission modeling program.
For example, while Forman and his team focused on generating mission plans for existing sensors, an expanded version of their software could help researchers determine how they might use future sensors to gather new data.
“With the kinds of things that TAT-C can do, we can create hypothetical sensors. What if we double the swath width? If it could see twice as much space, does that give us more information? Simultaneously, we can ask questions about the impact of different error characteristics for each of these hypothetical sensors and explore the corresponding tradeoff.” said Forman.
PROJECT LEAD
Barton Forman, University of Maryland, Baltimore County
SPONSORING ORGANIZATION
NASA’s Advanced Information Systems Technology (AIST) program, a part of NASA’s Earth Science Technology Office (ESTO), funded this project
Share
Details
Last Updated Mar 25, 2024 Related Terms
Earth Science Earth Science Technology Office GRACE (Gravity Recovery And Climate Experiment) Science-enabling Technology Technology Highlights Explore More
5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
Article
18 hours ago
10 min read Zero-Boil-Off Tank Experiments to Enable Long-Duration Space Exploration
Do we have enough fuel to get to our destination? This is probably one of…
Article
2 weeks ago
2 min read Students Become FjordPhyto Volunteers and Discover that Antarctica Is Much Colder Than Texas
Article
3 weeks ago
View the full article
-
By NASA
A final round of certification testing for production of new RS-25 engines to power the SLS (Space Launch System) rocket, beginning with Artemis V, is underway at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Block 1B will also be built to house new-production RS-25 core stage engines that will operate routinely at 111% of their rated power versus the Block 1 RS-25 engines that operate at 109%, providing almost 2,000 more pounds of payload to the Moon.NASA By: Martin Burkey
As NASA prepares for its first crewed Artemis missions, the agency is making preparations to build, test, and assemble the next evolution of its SLS (Space Launch System) rocket. The larger and power powerful version of SLS, known as Block 1B, can send a crew and large pieces of hardware to the Moon in a single launch and is set to debut for the Artemis IV mission.
“From the beginning, NASA’s Space Launch System was designed to evolve into more powerful crew and cargo configurations to provide a flexible platform as we seek to explore more of our solar system,” said John Honeycutt, SLS Program manager. “Each of the evolutionary changes made to the SLS engines, boosters, and upper stage of the SLS rocket are built on the successes of the Block 1 design that flew first with Artemis I in November 2022 and will, again, for the first crewed missions for Artemis II and III.”
Early manufacturing is already underway at NASA’s Michoud Assembly Facility in New Orleans, while preparations for the green run test series for its upgraded upper stage are in progress at nearby Stennis Space Center in Bay St. Louis, Mississippi.
New Upgrades for Bolder Missions
While using the same basic core stage and solid rocket booster design, and related components as the Block 1, Block 1B features two big evolutionary changes that will make NASA’s workhorse rocket even more capable for future missions to the Moon and beyond. A more powerful second stage and an adapter for large cargos will expand the possibilities for future Artemis missions.
“The Space Launch System Block 1B rocket will be the primary transportation for astronauts to the Moon for years to come,” said James Burnum, deputy manager of the NASA Block 1B Development Office. “We are building on the SLS Block 1 design, testing, and flight experience to develop safe, reliable transportation that will send bigger and heavier hardware to the Moon in a single launch than existing rockets.”
The in-space stage used to send the first three Artemis missions to the Moon, called the interim cryogenic propulsion stage (ICPS), uses a single engine and will be replaced by a larger, more powerful four-engine stage called the exploration upper stage (EUS). A different battery is among the many changes that will allow EUS to support the first eight hours of the mission following launch compared to the current ICPS two hours. All new hardware and software will be designed and tested to meet the different performance and environmental requirements.
The other configuration change is a universal stage adapter that connects the rocket to the Orion spacecraft. It also offers more than 10,000 cubic feet (286 cubic meters) of space to carry large components, such as modules for NASA’s future Gateway outpost that will be in lunar orbit to support crew between surface missions and unique opportunities for science at the Moon.
: Technicians at NASA’s Michoud Assembly Facility in New Orleans on Feb. 22 prepare elements that will form part of the midbody for the exploration upper stage. The midbody struts, or V-struts, will create the cage-like outer structure of the midbody that will connect the upper stage’s large liquid hydrogen tank to the smaller liquid oxygen tank. Manufacturing flight and test hardware for the future upper stage is a collaborative effort between NASA and Boeing, the lead contractor for EUS and the SLS core stage. Together, those upgrades will increase the payload capability for SLS from 59,000 pounds (27 metric tons) to approximately 84,000 pounds (38 metric tons). The four RL10 engines that will be used during the exploration upper stage green run test series at Stennis are complete, and work on the Artemis IV core stage is in progress at nearby Michoud.
More Opportunities
The evolved design also gives astronaut explorers more launch opportunities on a path to intercept the Moon. With four times the engines and almost four times the propellant and thrust of ICPS, the EUS also enables two daily launch opportunities compared to Block 1’s more limited lunar launch availability.
Among other capabilities, both astronauts and ground teams will be able to communicate with the in-space stage and safely control it while using Orion’s docking system to extract compenents destined for Gateway from the stage adapter.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon and commercial human landing systems, next-generation spacesuits, and rovers on the lunar surface. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.