Jump to content

NASA's Aerospace Safety Advisory Panel Releases 2021 Annual Report


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist concept shows a NASA-developed small-core jet engine installed in General Electric Aerospace’s CFM RISE jet engine design. The more fuel-efficient small core powers a large open turbofan, which also helps increase efficiency. The effort is part of NASA’s Sustainable Flight National Partnership to help inform the next generation of ultra-efficient airliners.GE Aerospace Hybrid-electric cars have been a staple of the road for many years now.
      Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.
      NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.
      In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.
      It really opens the door for more sustainable aviation even beyond the 2030s.
      Anthony nerone
      NASA Project Manager
      High Tech Hybrid-Electric
      The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.
      It represents a major step forward in jet engine technology.
      This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.
      “This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”
      The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.
      A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.
      At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.
      Michael Presby, a research materials engineer at NASA’s Glenn Research Center in Cleveland, adjusts an infrared thermal imaging camera used to monitor the temperature profile of a NASA-developed, high-temperature environmental barrier coating deposited on a ceramic matrix composite in support of the agency’s HyTEC project. The composite’s environmental barrier coating surface temperature is 3,000 degrees Fahrenheit.NASA / Bridget Caswell How Does It Work?
      A GE Aerospace Passport engine is being modified with hybrid electric components for testing.
      “Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”
      The challenge is figuring out the best times to use the electric motors.
      “Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.
      Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.
      “Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.
      The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.
      HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Air Traffic Management – eXploration (ATM-X) Description
      Article 6 days ago 1 min read Gateway Space Station in 3D
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Sep 16, 2024 EditorJim BankeContactBrian Newbacherbrian.t.newbacher@nasa.gov Related Terms
      Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Glenn Research Center Green Aviation Tech Hybrid Thermally Efficient Core View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      For 25 years, the Office of STEM Engagement (OSTEM) at NASA’s Johnson Space Center has inspired and provided high school students across the state of Texas with NASA-focused learning experiences through the High School Aerospace Scholars (HAS) program. The OSTEM team celebrated the milestone on Monday, July 29 at Johnson’s Gilruth Center with poster sessions, special presentations, and a networking reception.

      Fifty-one students who participated in the 2024 High School Aerospace Scholars program were invited to NASA’s Johnson Space Center in Houston to participate in an on-site experience. NASA/James Blair An authentic STEM learning experience for Texas high school juniors, HAS provides opportunities for students to engage with NASA’s missions and become the next generation of explorers. The year-long program begins in the fall with an online, state-aligned STEM learning experience focused on Earth science, technology, aeronautics, the solar system, the International Space Station, and NASA’s Moon to Mars exploration approach. Students engage in approximately four months of virtual learning through curriculum including interactive lessons, rubric-based activities, and quizzes.

      Students who complete the online courses with an overall average of 70% or greater receive an invitation to a five-day virtual summer experience called Moonshot. While actively mentored by NASA scientists and engineers, students work with a team to complete an Artemis-themed Moon to Mars mission and design challenge. The summer session also includes numerous gamified activities and guidance towards pathways to STEM careers.

      High School Aerospace Scholars collaborated on an engineering design challenge during their on-site experience at Johnson Space Center. NASA/Bill Stafford The top performing Moonshot teams are then invited to a four-day residential experience at Johnson, with lodging, meals, and transportation provided at no cost to the students. During the on-site session, students participate in NASA facility tours, complete engineering design challenges, and meet with NASA scientists and engineers who offer guidance on STEM careers. At the completion of the program, students can earn up to one full science elective credit for school.

      The HAS 25th anniversary celebration coincided with this year’s on-site experience. During the 2023-2024 school year, 798 students participated in the HAS online course, with 359 advancing to the summer Moonshot experience. The top six Moonshot teams (51 students) were invited to Johnson.

      High School Aerospace Scholars presented their Moonshot projects to Johnson Space Center team members during a poster session. NASA/James Blair The 51 selected students kicked off the anniversary celebration with a poster session to present their Moonshot projects. Following the session, students heard from Johnson Center Director Vanessa Wyche and Deputy Director Steve Koerner during a fireside chat. Speakers included Pam Melroy, NASA Deputy Administrator; Arturo Sanchez, Johnson External Relations Office Director; Mike Kincaid, NASA OSTEM Associate Administrator; Greg Bonnen, member of the Texas House of Representatives; Brian Freedman, Bay Area Houston Economic Partnership President; and Shelly Tornquist, director of Texas A&M University College of Engineering’s education outreach program, Spark!

      NASA astronaut Mike Fincke meets with 2024 High School Aerospace Scholars.NASA/Helen Arase Vargas Other notable attendees included NASA astronaut Mike Fincke, HAS activity managers from the past 25 years, and current HAS activity manager, Jakarda Varnado.

      Continuing the celebration, HAS hosted the second annual Alumni Social on Wednesday, July 31 encouraging current and former HAS students and mentors to connect over lunch. The annual student rocket launch was also held onsite on Thursday, August 1.
      2024 High School Aerospace Scholars prepare their model rockets for launch during the program’s on-site activities at Johnson Space Center. NASA/Josh Valcarcel Additionally, the HAS team activated a mobile exhibit at two different on-site locations throughout the week. Over 150 guests stopped by the exhibit, which featured a HAS video montage and the opportunity to touch a lunar sample. Several of the visitors communicated their appreciation for HAS, noting the program has made significant impact on their children’s motivation, school performance, and career paths. Many alumni have gone on to pursue careers within STEM, including nearly 30 HAS participants who have been employed by NASA within the past five years.

      2024 High School Aerospace Scholars connected with program alumni and HAS mentors during the Alumni Social held onsite at Johnson Space Center. NASA/Helen Arase Vargas For alumni who wish to continue their experience beyond the year-long program, HAS recently launched a mentorship course, for high school seniors. The course contains modules about leadership and STEM career opportunities and was designed to continue to engage the students as they prepare for the next step in their education or to launch their careers. Alumni also act as an additional layer of support for the junior scholars as they navigate their HAS experience.

      HAS is made possible through collaborations among NASA, the State of Texas, Bay Area Houston Economic Partnership, Texas A&M Engineering Experiment Station, Houston Livestock Show and Rodeo, and Rotary National Award for Space Achievement.

      Applications will reopen in September for students interested in participating in the 2025 HAS experience.
      View the full article
    • By Space Force
      The U.S. Air Force Chaplain Corps marked a significant milestone as it celebrated its 75th anniversary during its annual summit held in Arlington Aug. 6 - 8.

      View the full article
    • By NASA
      Teams with NASA’s Exploration Ground Systems Program, in preparation for the agency’s Artemis II crewed mission to the Moon, conduct testing of four emergency egress baskets on the mobile launcher at Launch Complex 39B at the agency’s Kennedy Space Center in Florida in July 2024. The baskets are used in the case of a pad abort emergency to allow astronauts and other pad personnel to escape quickly from the mobile launcher to the base of the pad to be driven to safety by emergency transport vehicles.NASA/Amanda Arrieta Since NASA began sending astronauts to space, the agency has relied on emergency systems for personnel to safely leave the launch pad and escape the hazard in the unlikely event of an emergency during the launch countdown.  
      During the Mercury and Gemini programs, NASA used launch escape systems on spacecraft for the crew to safely evacuate if needed. Though these systems are still in use for spacecraft today, the emergency routes on the ground were updated starting with the Apollo missions to account for not only the crew, but all remaining personnel at the launch pad. 
      During Apollo, personnel relied on a ground-based emergency egress system – or emergency exit route – to allow for a quick and safe departure. Though the system has varied over time and different launch pads use different escape systems, the overall goal has stayed the same – quickly leave the launch pad and head to safety.  
      Beginning with Artemis II, the Exploration Ground Systems (EGS) Program at Kennedy Space Center in Florida, will use a track cable which connects the mobile launcher to the perimeter area of the launch pad where four baskets, similar to gondolas at ski lifts, can ride down. Once down at the ground level, armored emergency response vehicles are stationed to take personnel safely away from the launch pad to one of the triage site locations at Kennedy. 
      “We have four baskets that sit on the side of the mobile launcher tower at the same level as the crew access arm, the location where the crew enters the spacecraft,” said Amanda Arrieta, mobile launcher 1 senior element engineer for NASA’s EGS Program. “The intention is to provide another means of egress for the crew and the closeout crew in the event of an emergency. Each of these baskets will go down a wire. It’s a wire rope system that connects to the pad terminus, an area near the pad perimeter where the baskets will land after leaving the mobile launcher tower.” 
      Infographic shows the route astronauts and personnel would take during an emergency abort situation. Credit: NASA The Artemis system works like this: personnel will exit the Orion spacecraft or the white room (depending where teams are at the time of the emergency) inside the crew access arm of the mobile launcher. Located on the 274-foot-level, teams are approximately 375 feet above the ground. From there, they will head down the 1,335-foot-long cables inside the emergency egress baskets to the launch pad perimeter, or the pad terminus area. Each basket, which is similar in size to a small SUV, is designed to carry up to five people or a maximum weight of 1,500 pounds.
      Once teams have left the terminus area and arrive at the triage site location, emergency response crews are there to evaluate and take care of any personnel. 
      “When we send our crews to the pad during launch, their safety is always at the forefront of our minds. While it is very unlikely that we will need the emergency egress and pad abort systems, they are built and tested to ensure that if we do need them then they are ready to go,” said Charlie Blackwell-Thompson, Artemis launch director. “Our upcoming integrated ground systems training is about demonstrating the capability of the entire emergency egress response from the time an emergency condition is declared until we have the crews, both flight and ground, safely accounted for outside the hazardous area.”  
      For the agency’s Commercial Crew Program, SpaceX uses a slidewire cable with baskets that ride down the cable at the Launch Complex 39A pad. At Space Launch Complex 40, meanwhile, the team uses a deployable chute for its emergency egress system. Boeing and United Launch Alliance also use a slidewire, but instead of baskets, the team deploys seats that ride down the slide wires, similar to riding down a zip line, at Space Launch Complex 41 at Cape Canaveral Space Force Station.  
      Artemis II will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft and will also introduce several new ground systems for the first time – including the emergency egress system. Though no NASA mission to date has needed to use its ground-based emergency egress system during launch countdown, those safety measures are still in place and maintained as a top priority for the agency. 
      View the full article
  • Check out these Videos

×
×
  • Create New...