Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      New three-dimensional (3D) models of objects in space have been released by NASA’s Chandra X-ray Observatory. These 3D models allow people to explore — and print — examples of stars in the early and end stages of their lives. They also provide scientists with new avenues to investigate scientific questions and find insights about the objects they represent.
      These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time.
      However, looking at images and animations is not the only way to experience this data. The four new 3D printable models of Cassiopeia A (Cas A), G292.0+1.8 (G292), Cygnus Loop supernova remnants, and the star known as BP Tau let us experience the celestial objects in the form of physical structures that will allow anyone to hold replicas of these stars and their surroundings and examine them from all angles.
      Cassiopeia A (Cas A)
      Using NASA’s James Webb Space Telescope, astronomers uncovered a mysterious feature within the remnant, nicknamed the “Green Monster,” alongside a puzzling network of ejecta filaments forming a web of oxygen-rich material. When combined with X-rays from Chandra, the data helped astronomers shed light on the origin of the Green Monster and revealed new insights into the explosion that created Cas A about 340 years ago, from Earth’s perspective.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia A "Green Monster" INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia AINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando BP Tau
      X-ray: NASA/CXC/SAO; Optical: PanSTARRS; Image Processing: NASA/CXC/SAO/N. Wolk This 3D model shows a star less than 10 million years old that is surrounded by a disk of material. This class of objects is known as T Tauri stars, named after a young star in the Taurus star-forming region. The model describes the effects of multiple flares, or outbursts that are detected in X-rays by Chandra from one T Tauri star known as BP Tau. These flares interact with the disk of material and lead to the formation of an extended outer atmosphere composed by hot loops, connecting the disk to the developing star.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of BP TauINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando Cygnus Loop
      X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the remains of the explosive death of a massive star. This 3D model is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. The Cygnus Loop is a highly extended, but faint, structure on the sky: At three degrees across, it has the diameter of six full moons.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cygnus LoopINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando G292.0+1.8
      X-ray: NASA/CXC/SAO; Optical:NSF/NASA/DSS; Image Processing This is a rare type of supernova remnant observed to contain large amounts of oxygen. The X-ray image of G292.0+1.8 from Chandra shows a rapidly expanding, intricately structured field left behind by the shattered star. By creating a 3D model of the system, astronomers have been able to examine the asymmetrical shape of the remnant that can be explained by a “reverse” shock wave moving back toward the original explosion.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of G292.0+1.8INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando The 3D models here are the subject of several scholarly papers by Salvatore Orlando of INAF in Palermo, Italy, and colleagues published in The Astrophysical Journal, Astronomy & Astrophysics, and Monthly Notices of the Royal Astronomical Society. Much of this work is also publicly available work on SketchFab.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features visualizations of three supernova remnants and one star. Each is rendered as a composite image, and as a digital 3-dimensional model, presented in separate short video clips. The composite images are two dimensional and static, but the digital models rotate, showcasing their three-dimensionality.
      The first featured supernova is Cassiopeia A. In the X-ray, optical, and infrared composite image, the debris from an exploded star resembles a round purple gas cloud, marbled with streaks of golden light. In the rotating, 3D model, the purple gas cloud is depicted as a flat disk, like a record or CD. Bursting out the front and back of the disk is an orange and white shape similar to a ball of coral, or a head of cauliflower lined with stubby tendrils. Most of the ball, and the majority of the tendrils, appear on one side of the disk. On the opposite side, the shape resembles dollops of thick whipped cream.
      Next in the release is a star known as BP Tau. BP Tau is a developing star, less than 10 million years old, and prone to outbursts or flares. These flares interact with a disk of material that surrounds the young star, forming hot loops of extended atmosphere. In the composite image, BP Tau resembles a distant, glowing white dot surrounded by a band of pink light. The rotating, 3D model is far more dynamic and intriguing! Here, the disk of material resembles a large blue puck with round, ringed, concave surfaces. At the heart of the puck is a small, glowing red orb: the developing star. Shooting out of the orb are long, thin, green strands: the flares. Also emerging from the orb are orange and pink petal-shaped blobs: the loops of extended atmosphere. Together, the orb, strands, and petals resemble an exotic flowering orchid.
      The third celestial object in this release is the supernova remnant called Cygnus Loop. In the composite image, the remnant resembles a wispy cloud in oranges, blues, purples, and whites, shaped like a backwards letter C. The 3D model examines this cloud of interstellar material interacting with the superheated, supernova blast wave. In the 3D model, the Cygnus Loop resembles a bowl with a thick base, and a wedge cut from the side like a slice of pie. The sides of the bowl are rendered in swirled blues and greens. However, inside the thick base, revealed by the wedge-shaped cut, are streaks of red and orange. Surrounding the shape are roughly parallel thin red strands, which extend beyond the top and bottom of the digital model.
      The final supernova featured in this release is G292.0+1.8. The composite image depicts the remnant as a bright and intricate ball of red, blue, and white X-ray gas and debris set against a backdrop of gleaming stars. In the 3D model, the remnant is rendered in translucent icy blue and shades of orange. Here, the rotating shape is revealed to be somewhat like a bulbous arrowhead, or perhaps an iceberg on its side.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      About the Author
      Lee Mohon

      Share
      Details
      Last Updated Apr 16, 2025 Related Terms
      Chandra X-Ray Observatory Astrophysics General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants The Universe Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 5 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 6 hours ago 1 min read Why Do We Grow Plants in Space?
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Science Science Activation GLOBE Mission Earth Supports… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      GLOBE Mission Earth Supports Career Technical Education
      The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between career technical education (CTE) programs and real-world science, inspiring students across the United States to pursue careers in Science, Technology, Engineering, and Mathematics (STEM).
      GME is a collaborative effort between NASA scientists, educators, and schools that brings NASA Earth science and the GLOBE Program into classrooms to support hands-on, inquiry-based learning. GLOBE (Global Learning and Observations to Benefit the Environment) is an international science and education program that provides students and the public with the opportunity to participate in data collection and the scientific process, contributing meaningfully to our understanding of the Earth system.
      By connecting students directly to environmental research and NASA data, GME helps make science more relevant, engaging, and applicable to students’ futures. In CTE programs—where project-based and work-based learning are key instructional strategies—GME’s integration of GLOBE protocols offers students the chance to develop not only technical skills, but also essential data literacy and professional competencies like collaboration, critical thinking, and communication. These cross-cutting skills are valuable across a wide range of industries, from agriculture and advanced manufacturing to natural resources and public safety.
      The real-world, hands-on approach of CTE makes it an ideal setting for implementing GLOBE to support STEM learning across industries. At Skyline High School in Oakland, California, for example, GLOBE has been embedded in multiple courses within the school’s Green Energy Pathway, originally launched by GLOBE partner Tracy Ostrom. Over the past decade, nearly 1,000 students have participated in GLOBE activities at Skyline. Many of these students describe their experiences with environmental data collection and interactions with NASA scientists as inspiring and transformative. Similarly, at Toledo Technology Academy, GME is connecting students with NASA science and renewable energy projects—allowing them to study how solar panels impact their local environment and how weather conditions affect wind energy generation.
      To expand awareness of how GLOBE can enhance CTE learning and career preparation, WestEd staff Svetlana Darche and Nico Janik presented at the Educating for Careers Conference on March 3, 2025, in Sacramento, California. This event, sponsored by the California chapter of the Association for Career and Technical Education (ACTE), brought together over 2,600 educators dedicated to equipping students with the tools they need to succeed in an evolving job market. Darche and Janik’s session, titled “Developing STEM Skills While Contributing to Science,” showcased GLOBE’s role in work-based learning and introduced new federal definitions from the Carl D. Perkins Act (Perkins V) that emphasize:
      Interactions with industry professionals A direct link to curriculum and instruction First-hand engagement with real-world tasks in a given career field GLOBE’s approach to scientific data collection aligns perfectly with these criteria. Janik led 40 educators through a hands-on experience using the GLOBE Surface Temperature Protocol, demonstrating how students investigate the Urban Heat Island Effect while learning critical technical and analytical skills. By collecting and analyzing real-world data, students gain firsthand experience with the tools and methods used by scientists, bridging the gap between classroom learning and future career opportunities.
      Through GME’s work with CTE programs, students are not only learning science—they are doing science. These authentic experiences inspire, empower, and prepare students for careers where data literacy, scientific inquiry, and problem-solving are essential. With ongoing collaborations between GLOBE, NASA, and educators nationwide, the next generation of STEM professionals is already taking shape—one real-world investigation at a time.
      GME is supported by NASA under cooperative agreement award number NNX16AC54A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      GreenEnergyPathway presenting the Green Energy Pathway CTE program. Share








      Details
      Last Updated Apr 11, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Earth Science For Kids and Students Opportunities For Educators to Get Involved Explore More
      1 min read Kudos Test Article


      Article


      3 hours ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      24 hours ago
      3 min read NASA Science Supports Data Literacy for K-12 Students


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Students explore the Manufacturing Facility at NASA’s Glenn Research Center in Cleveland during Career Technical Education Day on March 11.Credit: NASA/Jef Janis NASA’s Glenn Research Center in Cleveland welcomed more than 150 students and educators to showcase technical careers, inspire the next generation, and ignite a passion for learning during a Career Technical Education program March 11.
      “Here at Glenn Research Center, we love what we do, and we love to share what we do,” said Dawn Schaible, Glenn’s deputy director, during opening remarks at the event. “I hope you find today educational and inspiring, and let your passion and hard work drive you to places you can’t even imagine. We have space for every profession at NASA.”
      Dawn Schaible, NASA Glenn Research Center’s deputy director, welcomes more than 150 students to Career Technical Education Day on March 11. Students toured the Manufacturing Facility and the Flight Research Building while talking to NASA experts about technical careers within the agency.Credit: NASA/Jef Janis The event, hosted by NASA’s Next Gen STEM Project in collaboration with Glenn’s Office of STEM Engagement (OSTEM), gave students a behind-the-scenes look at the technical careers that make NASA’s missions possible.
      Glenn’s Manufacturing Facility opened its doors to demonstrate how technical careers like machining and fabrication enable NASA to take an idea and turn it into a reality. Students explored Glenn’s metal fabrication, instrumentation, wiring, machining, and 3D printing capabilities while gleaning advice from experts in the field.
      Students also toured Glenn’s Flight Research Building where they spoke with the center’s flight crew, learned how the agency is using the Pilatus PC-12 aircraft to support a variety of aeronautics research missions, and discussed what a career in aviation looks like.

      A student experiences virtual reality during Career Technical Education Day at NASA’s Glenn Research Center in Cleveland on March 11. The Graphics and Visualization Lab spoke with students about how 3D demonstrations help NASA find innovative solutions to real-world challenges.Credit: NASA/Jef Janis “In OSTEM, our role is connecting students, just like you, with real opportunities at NASA,” said Clarence Jones, OSTEM program specialist, while addressing the group. “We want you to be able to see yourselves in these roles and possibly be part of our workforce someday.”
      Next Gen STEM and OSTEM host many events like Career Technical Education Day. The next opportunity, “Spinoffs in Sports,” is scheduled for April 10. Participants will learn about NASA technologies that are being used the sporting world. Registration for this virtual career connection ends April 4. 
      NASA also offers In-Flight STEM Downlinks for students and educators to interact with astronauts aboard the International Space Station during Q&A sessions. The Expedition 74 proposal window is open now through April 29.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 6 days ago 1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 1 week ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 1 week ago View the full article
    • By European Space Agency
      Image: For Valentine’s Day, the Copernicus Sentinel-2 mission picks out a heart in the landscape north of Mount St Helens in the US state of Washington. View the full article
    • By NASA
      4 Min Read Heart Health
      Jessica Meir conducts cardiac research in the space station’s Life Sciences Glovebox. Credits: NASA Science in Space: February 2025
      February was first proclaimed as American Heart Month in 1964. Since then, its 28 (or 29) days have served as an opportunity to encourage people to focus on their cardiovascular health.
      The International Space Station serves as a platform for a variety of ongoing research on human health, including how different body systems adapt to weightlessness. This research includes assessing cardiovascular health in astronauts during and after spaceflight and other studies using models of the cardiovascular system, such as tissue cultures. The goal of this work is to help promote heart health for humans in space and everyone on Earth. For this Heart Month, here is a look at some of this spaceflight research
      Building a better heart model
      Media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA Microgravity exposure is known to cause changes in cardiovascular function. Engineered Heart Tissues assessed these changes using 3D cultured cardiac tissues that model the behavior of actual heart tissues better than traditional cell cultures. When exposed to weightlessness, these “heart-on-a-chip” cells behaved in a manner similar to aging on Earth. This finding suggests that these engineered tissues can be used to investigate the effects of space radiation and long-duration spaceflight on cardiac function. Engineered tissues also could support development of measures to help protect crew members during a mission to Mars. Advanced 3D culture methodology may inform development of strategies to prevent and treat cardiac diseases on Earth as well.
      Private astronaut heart health
      In April 2022, the 11-person station crew included (clockwise on the outside from bottom right) NASA astronaut Tom Marshburn; Roscomos cosmonauts Oleg Artemyev, Denis Matveev, and Sergey Korsakov; NASA astronauts Raja Chari, Kayla Barron, and Matthias Maurer; and Ax-1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael López-Alegría.-Alegria.NASA For decades, human research in space has focused on professional and government-agency astronauts, but commercial spaceflight opportunities now allow more people to participate in microgravity research. Cardioprotection Ax-1 analyzed cardiovascular and general health in private astronauts on the 17-day Axiom-1 mission.
      The study found that 14 health biomarkers related to cardiac, liver, and kidney health remained within normal ranges during the mission, suggesting that spaceflight did not significantly affect the health of the astronaut subjects. This study paves the way for monitoring and studying the effects of spaceflight on private astronauts and developing health management plans for commercial space providers.
      Better measurements for better health
      ESA astronaut Tim Peake conducts operations for the Vascular Echo experiment. NASA Vascular Echo, an investigation from CSA (Canadian Space Agency), examined blood vessels and the heart using a variety of tools, including ultrasound. A published study suggests that 3D imaging technology might better measure cardiac and vascular anatomy than the 2D system routinely used on the space station. The research team also developed a probe for the ultrasound device that better directs the beam, making it possible for someone who is not an expert in sonography to take precise measurements. This technology could help astronauts monitor heart health and treat cardiovascular issues on a long-duration mission to the Moon or Mars. The technology also could help patients on Earth who live in remote locations, where an ultrasound operator may not always be available.
      Long-term heart health in space
      As part of exploring ways to keep astronauts healthy on missions to the Moon and Mars, NASA is conducting a suite of space station studies called CIPHER that looks at the effects of spaceflight lasting up to a year. One CIPHER study, Vascular Calcium, examines whether calcium lost from bone during spaceflight might deposit in the arteries, increasing vessel stiffness and contributing to increased risk of future cardiovascular disease. Astronaut volunteers provide blood and urine samples and undergo ultrasound and high-resolution scans of their bones and arteries for this investigation. Another CIPHER study, Coronary Responses, uses advanced imaging tests to measure heart and artery response to spaceflight.
      These studies will help scientists determine whether spaceflight accelerates narrowing and stiffening of the arteries, known as atherosclerosis, or increases the risk of atrial fibrillation, a rapid and irregular heartbeat seen in middle-aged adults. This work also could help identify potential biomarkers and early warning indicators of cardiovascular disease.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      Station Science 101: Human Research
      View the full article
  • Check out these Videos

×
×
  • Create New...