Members Can Post Anonymously On This Site
Remote Viewing confirms Ashtar Command base hidden in Jupiter’s clouds
-
Similar Topics
-
By European Space Agency
For decades, satellites have played a crucial role in our understanding of the remote polar regions. The ongoing loss of Antarctic ice, owing to the climate crisis, is, sadly, no longer surprising. However, satellites do more than just track the accelerating flow of glaciers towards the ocean and measure ice thickness.
New research highlights how ESA’s CryoSat mission has been used to uncover the hidden impact of subglacial lakes – vast reservoirs of water buried deep under the ice – that can suddenly drain into the ocean in dramatic outbursts and affect ice loss.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Captures a Neighbor’s Colorful Clouds
This NASA/ESA Hubble Space Telescope image features part of the Small Magellanic Cloud. ESA/Hubble & NASA, C. Murray
Download this image
Say hello to one of the Milky Way’s neighbors! This NASA/ESA Hubble Space Telescope image features a scene from one of the closest galaxies to the Milky Way, the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy located about 200,000 light-years away. Most of the galaxy resides in the constellation Tucana, but a small section crosses over into the neighboring constellation Hydrus.
Thanks to its proximity, the SMC is one of only a few galaxies that are visible from Earth without the help of a telescope or binoculars. For viewers in the southern hemisphere and some latitudes in the northern hemisphere, the SMC resembles a piece of the Milky Way that has broken off, though in reality it’s much farther away than any part of our own galaxy.
With its 2.4-meter mirror and sensitive instruments, Hubble’s view of the SMC is far more detailed and vivid than what humans can see. Researchers used Hubble’s Wide Field Camera 3 to observe this scene through four different filters. Each filter permits different wavelengths of light, creating a multicolored view of dust clouds drifting across a field of stars. Hubble’s view, however, is much more zoomed-in than our eyes, allowing it to observe very distant objects. This image captures a small region of the SMC near the center of NGC 346, a star cluster that is home to dozens of massive young stars.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Mar 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Magellanic Clouds The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hearing Hubble
Reshaping Our Cosmic View: Hubble Science Highlights
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Sols 4484-4485: Remote Sensing on a Monday
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
Earth planning date: Monday, March 17, 2025
Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning.
We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay!
The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead.
Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures.
After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals.
The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan.
Share
Details
Last Updated Mar 20, 2025 Related Terms
Blogs Explore More
2 min read Sols 4481-4483: Humber Pie
Article
2 days ago
3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock?
Article
6 days ago
3 min read Navigating a Slanted River
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
DAF guidance on Return to In-Person Work for the purpose of creating a more capable and lethal force.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.