Jump to content

Interstellar Comet 2I/Borisov Swings Past the Sun


HubbleSite

Recommended Posts

low_STSCI-H-p1961a-k-1340x520.png

When astronomers see something in the universe that at first glance seems like one-of-a-kind, it's bound to stir up a lot of excitement and attention. Enter comet 2I/Borisov. This mysterious visitor from the depths of space is the first identified comet to arrive here from another star. We don't know from where or when the comet started heading toward our Sun, but it won't hang around for long. The Sun's gravity is slightly deflecting its trajectory, but can't capture it because of the shape of its orbit and high velocity of about 100,000 miles per hour.

Telescopes around the world have been watching the fleeting visitor. Hubble has provided the sharpest views as the comet skirts by our Sun. Since October the space telescope has been following the comet like a sports photographer following horses speeding around a racetrack. Hubble revealed that the heart of the comet, a loose agglomeration of ices and dust particles, is likely no more than about 3,200 feet across, about the length of nine football fields. Though comet Borisov is the first of its kind, no doubt there are many other comet vagabonds out there, plying the space between stars. Astronomers will eagerly be on the lookout for the next mysterious visitor from far beyond.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      An aerial image from 1965 shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction at NASA’s Stennis Space Center (then known as Mississippi Test Operations) taking shape.NASA/Stennis Since the United States sent the first humans to the Moon more than 60 years ago, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has answered the call to help power the nation’s space dreams.  
      “History shows NASA Stennis is the country’s premier rocket engine test site and the go-to place for propulsion testing,” NASA Stennis Director John Bailey said. “It started with Apollo and continued through space shuttle. Now, we are going back to the Moon and beyond with Artemis – and it all comes through NASA Stennis.” 
      As the nation raced to send the first humans to the Moon, NASA selected a remote location in Hancock County, Mississippi, in October 1961 to test the needed rocket stages. Thanks to a massive construction project, the site conducted its first Saturn V rocket stage test in April 1966. In the next four-plus years, NASA Stennis tested 27 Saturn V stages, including those that launched 12 astronauts to walk on the Moon.  
      “Talking to people working here during those years, you hear how much they believed in the mission,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “Their hard work helped America reach the Moon and showed us the possibilities for NASA Stennis.”   
      Construction workers bring down a tree during the early days of construction for NASA’s Stennis Space Center. Tree-cutting to start what was the largest construction project in Mississippi – and one of the largest in the United States – at the time began May 17, 1963.NASA/Stennis NASA Stennis (then known as the Mississippi Test Facility) conducts its first-ever test firing – a 15-second hot fire of the Saturn V S-II-C second stage prototype – on the A-2 Test Stand on April 23, 1966.NASA/Stennis An aerial image from early 1967 shows the completed A-2 Test Stand in the foreground and the Thad Cochran Test Stand (B-1/B-2) in the background at NASA’s Stennis Space Center, then known as the Mississippi Test Facility.NASA/Stennis NASA officials view the first space shuttle main engine test on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center (then known as National Space Technology Laboratories) on May 19, 1975.NASA/Stennis A 1979 image offers a close-up view of a space shuttle main propulsion test article hot fire on the B-2 side of the Thad Cochran Test Stand at NASA’s Stennis Space Center (then known as National Space Technology Laboratories). Main propulsion test article testing involved installing a shuttle fuel tank, a mockup of the shuttle orbiter and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously, as would be done during an actual launch.NASA/Stennis As Apollo missions neared an end, plans were underway to drastically reduce the NASA Stennis footprint. Enter the space shuttle. NASA considered three locations to test engines for its new reusable vehicle before selecting NASA Stennis on March 1, 1970, ensuring the center’s future for the next several decades.  
      Space shuttle main engine testing proved challenging as the site transitioned from handling full rocket stages to firing single engines. “A big part of the challenge was the fact that teams were testing an entire engine from the very start,” NASA Test Operations Chief Maury Vander said. “Typically, you begin testing components, then progress to a full engine. Teams had a lot to learn in real time.” 
      NASA Stennis teams also tested the shuttle Main Propulsion Test Article with three engines firing simultaneously. The testing was particularly critical given the first shuttle mission would carry astronauts. 
      NASA Stennis teams worked diligently to demonstrate the shuttle system would operate safely, an effort characterized as one of the site’s finest hours. Following the first shuttle mission in 1981, astronauts Robert Crippen and John Young visited the south Mississippi site. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees. 
      From 1975 to 2009, NASA Stennis tested every main engine to help power 135 shuttle missions that enabled historic missions, such as those that deployed and repaired the Hubble Space Telescope and assembled the International Space Station, enabling its many scientific experiments and spinoff technologies. The site also tested every engine and component upgrade and helped troubleshoot performance issues. It led test campaigns following shuttle accidents to help ensure safe returns to flight. In total, the site conducted 2,307 tests for 820,475.68 seconds of accumulated hot fire. 
      NASA conducts the final test of a space shuttle main engine on the A-2 Test Stand at NASA’s Stennis Space Center on July 29, 2009. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission.  NASA / Stennis An on-stand camera offers a closeup view of the first test of an RS-25 engine on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Jan. 9, 2015. RS-25 engines power the core stage of NASA’s powerful SLS (Space Launch System) rocket.NASA/Stennis Crews at NASA’s Stennis Space Center install the first core stage of NASA’s powerful SLS (Space Launch System) on the B-2 side of the Thad Cochran Test Stand on Jan. 21-22, 2020. Following testing, the stage would help launch the Artemis I mission in November 2022.NASA/Stennis NASA conducts a full-duration RS-25 hot fire April 3, 2024, on the Fred Haise Test Stand at NASA’s Stennis Space Center, achieving a major milestone for future Artemis flights of NASA’s SLS (Space Launch System) rocket. It marked the final hot fire of a 12-test series to certify production of new RS-25 engines by lead contractor L3Harris (formerly known as Aerojet Rocketdyne) to help power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V.NASA/Stennis Even as NASA Stennis tested main engines to power shuttle missions, the site led in testing next-generation engines, including the Fastrac, XRS-2200 linear aerospike, and J-2X. It also developed its E Test Complex, with multiple test stands and cells, to support a range of component and engine test projects, including those of commercial aerospace companies.
      A landmark agreement between NASA Stennis and Aerojet Rocketdyne (now known as L3Harris) in 1998 marked the site’s first test partnership with such a company. “That was the starting point,” said Vander. “Today, we are a preferred partner for multiple companies and test projects, large and small.” 
      NASA Stennis also is testing RS-25 engines and related systems to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon. When the agency travels to Mars, it is expected the missions will launch with engines tested at the Mississippi site as well. 
      “The Gulf Coast of Mississippi helped achieve our space dreams of the past, and NASA Stennis continues supporting today’s dreams,” Bailey said. “It is a true testament to the expertise and dedication of our entire team and the incredible support of surrounding communities and the whole state.” 
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By European Space Agency
      Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
      Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
      read the article Philae’s extraordinary comet landing relived.
      View the full article
    • By European Space Agency
      On 12 November 2014, after a ten year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate Philae’s impressive achievements at Comet 67P/Churyumov-Gerasimenko.
      View the full article
    • By European Space Agency
      Proba-3 is such an ambitious mission that it needs more than one single spacecraft to succeed. In order for Proba-3’s Coronagraph spacecraft observe the Sun’s faint surrounding atmosphere, the disk-bearing Occulter spacecraft must block out the fiery solar disk. This means Proba-3’s Occulter ends up facing the Sun continuously, making it a valuable platform for science in its own right.
      View the full article
    • By NASA
      4 min read
      Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
      On Wednesday, Nov. 6, 2024, NASA’s Parker Solar Probe will complete its final Venus gravity assist maneuver, passing within 233 miles (376 km) of Venus’ surface. The flyby will adjust Parker’s trajectory into its final orbital configuration, bringing the spacecraft to within an unprecedented 3.86 million miles of the solar surface on Dec. 24, 2024. It will be the closest any human made object has been to the Sun.
      Parker’s Venus flybys have become boons for new Venus science thanks to a chance discovery from its Wide-Field Imager for Parker Solar Probe, or WISPR. The instrument peers out from Parker and away from the Sun to see fine details in the solar wind. But on July 11, 2020, during Parker’s third Venus flyby, scientists turned WISPR toward Venus in hopes of tracking changes in the planet’s thick cloud cover. The images revealed a surprise: A portion of WISPR’s data, which captures visible and near infrared light, seemed to see all the way through the clouds to the Venusian surface below. 
      “The WISPR cameras can see through the clouds to the surface of Venus, which glows in the near-infrared because it’s so hot,” said Noam Izenberg, a space scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.
      Venus, sizzling at approximately 869 degrees Fahrenheit (about 465 C), was radiating through the clouds.
      The WISPR images from the 2020 flyby, as well as the next flyby in 2021, revealed Venus’ surface in a new light. But they also raised puzzling questions, and scientists have devised the Nov. 6 flyby to help answer them.
      Left: A series of WISPR images of the nightside of Venus from Parker Solar Probe’s fourth flyby showing near infrared emissions from the surface. In these images, lighter shades represent warmer temperatures and darker shades represent cooler. Right: A combined mosaic of radar images of Venus’ surface from NASA’s Magellan mission, where the brightness indicates radar properties from smooth (dark) to rough (light), and the colors indicate elevation from low (blue) to high (red). The Venus images correspond well with data from the Magellan spacecraft, showing dark and light patterns that line up with surface regions Magellan captured when it mapped Venus’ surface using radar from 1990 to 1994. Yet some parts of the WISPR images appear brighter than expected, hinting at extra information captured by WISPR’s data. Is WISPR picking up on chemical differences on the surface, where the ground is made of different material? Perhaps it’s seeing variations in age, where more recent lava flows added a fresh coat to the Venusian surface.
      “Because it flies over a number of similar and different landforms than the previous Venus flybys, the Nov. 6 flyby will give us more context to evaluate whether WISPR can help us distinguish physical or even chemical properties of Venus’ surface,” Izenberg said.
      After the Nov. 6 flyby, Parker will be on course to swoop within 3.8 million miles of the solar surface, the final objective of the historic mission first conceived over 65 years ago. No human-made object has ever passed this close to a star, so Parker’s data will be charting as-yet uncharted territory. In this hyper-close regime, Parker will cut through plumes of plasma still connected to the Sun. It is close enough to pass inside a solar eruption, like a surfer diving under a crashing ocean wave.
      “This is a major engineering accomplishment,” said Adam Szabo, project scientist for Parker Solar Probe at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The closest approach to the Sun, or perihelion, will occur on Dec. 24, 2024, during which mission control will be out of contact with the spacecraft. Parker will send a beacon tone on Dec. 27, 2024, to confirm its success and the spacecraft’s health. Parker will remain in this orbit for the remainder of its mission, completing two more perihelia at the same distance.
      Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living with a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, manages the Parker Solar Probe mission for NASA and designed, built, and operates the spacecraft.
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Wind The Sun Venus Keep Exploring Discover More Topics From NASA
      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Sun



      Parker Solar Probe Stories



      Sun: Exploration


      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...