Jump to content

STScI Astronomers Kathryn Flanagan and Colin Norman Elected AAAS Fellows


Recommended Posts

Posted
low_Kathy-Norman-p1936a1-1340x520.jpg

The American Association for the Advancement of Science (AAAS) Council has elected Kathryn Flanagan of the Space Telescope Science Institute (STScI) and Colin Norman of STScI and Johns Hopkins University, and 441 other AAAS members as Fellows of the AAAS.

Dr. Flanagan is cited by the AAAS for her lead role calibrating grating spectrometers for NASA's Chandra X-ray Observatory mission; X-ray observations of astrophysical plasmas; and leadership in the James Webb Space Telescope project.

Dr. Norman is cited by the AAAS for distinguished contributions to an array of subjects in theoretical astrophysics, especially in the areas of the interstellar medium, galaxy dynamics, star formation, and galaxy clusters.

For more information about this announcement, visit the AAAS website.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities. The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.
      Radio images of 1ES 1927+654 reveal emerging structures that appear to be jets of plasma erupting from both sides of the galaxy’s central black hole following a strong radio flare. The first image, taken in June 2023, shows no sign of the jet, possibly because hot gas screened it from view. Then, starting in February 2024, the features emerge and expand away from the galaxy’s center, covering a total distance of about half a light-year as measured from the center of each structure. NSF/AUI/NSF NRAO/Meyer at al. 2025 The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.
      “In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst,” said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). “Many teams have been keeping a close eye on it ever since.”
      She presented her team’s findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.
      After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA’s Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA’s (European Space Agency) XMM-Newton mission, continues.
      The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NRAO’s (National Radio Astronomy Observatory) VLBA (Very Long Baseline Array) and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927+654’s distance.
      Active galaxy 1ES 1927+654, circled, has exhibited extraordinary changes since 2018, when a major outburst occurred in visible, ultraviolet, and X-ray light. The galaxy harbors a central black hole weighing about 1.4 million solar masses and is located 270 million light-years away. Pan-STARRS Radio data from February, April, and May 2024 reveals what appear to be jets of ionized gas, or plasma, extending from either side of the black hole, with a total size of about half a light-year. Astronomers have long puzzled over why only a fraction of monster black holes produce powerful plasma jets, and these observations may provide critical clues.
      “The launch of a black hole jet has never been observed before in real time,” Meyer noted. “We think the outflow began earlier, when the X-rays increased prior to the radio flare, and the jet was screened from our view by hot gas until it broke out early last year.”
      A paper exploring that possibility, led by Laha, is under review at The Astrophysical Journal. Both Meyer and Megan Masterson, a doctoral candidate at the Massachusetts Institute of Technology in Cambridge who also presented at the meeting, are co-authors.
      Using XMM-Newton observations, Masterson found that the black hole exhibited extremely rapid X-ray variations between July 2022 and March 2024. During this period, the X-ray brightness repeatedly rose and fell by 10% every few minutes. Such changes, called millihertz quasiperiodic oscillations, are difficult to detect around supermassive black holes and have been observed in only a handful of systems to date. 
      “One way to produce these oscillations is with an object orbiting within the black hole’s accretion disk. In this scenario, each rise and fall of the X-rays represents one orbital cycle,” Masterson said.  
      If the fluctuations were caused by an orbiting mass, then the period would shorten as the object fell ever closer to the black hole’s event horizon, the point of no return. Orbiting masses generate ripples in space-time called gravitational waves. These waves drain away orbital energy, bringing the object closer to the black hole, increasing its speed, and shortening its orbital period.
      Over two years, the fluctuation period dropped from 18 minutes to just 7 — the first-ever measurement of its kind around a supermassive black hole. If this represented an orbiting object, it was now moving at half the speed of light. Then something unexpected happened — the fluctuation period stabilized.
      In this artist’s concept, matter is stripped from a white dwarf (sphere at lower right) orbiting within the innermost accretion disk surrounding 1ES 1927+654’s supermassive black hole. Astronomers developed this scenario to explain the evolution of rapid X-ray oscillations detected by ESA’s (European Space Agency) XMM-Newton satellite. ESA’s LISA (Laser Interferometer Space Antenna) mission, due to launch in the next decade, should be able to confirm the presence of an orbiting white dwarf by detecting the gravitational waves it produces. NASA/Aurore Simonnet, Sonoma State University “We were shocked by this at first,” Masterson explained. “But we realized that as the object moved closer to the black hole, its strong gravitational pull could begin to strip matter from the companion. This mass loss could offset the energy removed by gravitational waves, halting the companion’s inward motion.”
      So what could this companion be? A small black hole would plunge straight in, and a normal star would quickly be torn apart by the tidal forces near the monster black hole. But the team found that a low-mass white dwarf — a stellar remnant about as large as Earth — could remain intact close to the black hole’s event horizon while shedding some of its matter. A paper led by Masterson summarizing these results will appear in the Feb. 13 edition of the journal Nature.
      This model makes a key prediction, Masterson notes. If the black hole does have a white dwarf companion, the gravitational waves it produces will be detectable by LISA (Laser Interferometer Space Antenna), an ESA mission in partnership with NASA that is expected to launch in the next decade.

      Download high-resolution images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contacts:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Jill Malusky
      304-456-2236
      jmalusky@nrao.edu
      National Radio Astronomy Observatory, Charlottesville, Va.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jan 13, 2025 Related Terms
      Active Galaxies Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Jet Propulsion Laboratory Neil Gehrels Swift Observatory NICER (Neutron star Interior Composition Explorer) NuSTAR (Nuclear Spectroscopic Telescope Array) Radio Astronomy Supermassive Black Holes The Universe White Dwarfs X-ray Astronomy XMM-Newton (X-ray Multi-Mirror Newton) View the full article
    • By NASA
      This illustration shows a red, early-universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.NOIRLab/NSF/AURA/J. da Silva/M. Zamani A rapidly feeding black hole at the center of a dwarf galaxy in the early universe, shown in this artist’s concept, may hold important clues to the evolution of supermassive black holes in general.
      Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers discovered this low-mass supermassive black hole just 1.5 billion years after the big bang. The black hole is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.
      Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate so soon after the birth of the universe, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early universe.
      The black hole, called LID-568, was hidden among thousands of objects in the Chandra X-ray Observatory’s COSMOS legacy survey, a catalog resulting from some 4.6 million Chandra observations. This population of galaxies is very bright in the X-ray light, but invisible in optical and previous near-infrared observations. By following up with Webb, astronomers could use the observatory’s unique infrared sensitivity to detect these faint counterpart emissions, which led to the discovery of the black hole.
      The speed and size of these outflows led the team to infer that a substantial fraction of the mass growth of LID-568 may have occurred in a single episode of rapid accretion.
      LID-568 appears to be feeding on matter at a rate 40 times its Eddington limit. This limit relates to the maximum amount of light that material surrounding a black hole can emit, as well as how fast it can absorb matter, such that its inward gravitational force and outward pressure generated from the heat of the compressed, infalling matter remain in balance.
      These results provide new insights into the formation of supermassive black holes from smaller black hole “seeds,” which current theories suggest arise either from the death of the universe’s first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). Until now, these theories lacked observational confirmation.
      The new discovery suggests that “a significant portion of mass growth can occur during a single episode of rapid feeding, regardless of whether the black hole originated from a light or heavy seed,” said International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh, who led the research team.
      A paper describing these results (“A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST”) appears in the journal Nature Astronomy.
      About the Missions
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Elizabeth Laundau
      NASA Headquarters
      Washington, DC
      202-923-0167
      elizabeth.r.landau@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The American Institute of Aeronautics and Astronautics (AIAA) has named two distinguished engineers at NASA’s Glenn Research Center in Cleveland AIAA Associate Fellows.  
      The grade of Associate Fellow recognizes individuals who have accomplished or overseen important engineering or scientific work, done original work of outstanding merit, or have otherwise made outstanding contributions to the arts, sciences, or technology of aeronautics or astronautics. To be selected as an Associate Fellow, an individual must be an AIAA Senior Member in good standing, with at least 12 years of professional experience, and be recommended by three AIAA members. 
      L. Danielle KochCredit: NASA L. Danielle Koch, aerospace engineer, performs research and educational outreach at NASA Glenn. Her 34-year career at NASA has been dedicated to conducting research for safer, cleaner, and quieter aircraft engines; high-performance ventilation systems for spacecraft; and bio-inspired broadband acoustic absorbers. She has authored over 50 technical publications and has been granted three patents. Koch has been recognized for excellence in engineering and educational outreach with many awards, most recently named as one of the 2024 Women of Distinction by the Girl Scouts of Northeast Ohio. 

      Dr. Sam LeeCredit: NASA Dr. Sam Lee, a research engineer supporting the Aircraft Icing Branch, conducts research in NASA Glenn’s Icing Research Tunnel to study how ice builds up, or accretes, on aircraft surfaces. The results from the experiments are used to understand the physics of how ice accretes on aircraft during flight and to provide the validation data to develop computational tools to predict ice accretion. He also performs research on the effects of ice accretion on aircraft performance in aerodynamic wind tunnels. Lee has authored 17 conference papers and journal papers. He has contributed to the development of many future engineers and scientists as a mentor for NASA’s Explorer Scouts program and various college internship programs. Lee has been part of the Aircraft Icing Branch since 2002.   
      AIAA will formally honor and induct the class at the AIAA Associate Fellows Induction Ceremony and Dinner on Jan. 8, 2025, during the 2025 AIAA SciTech Forum in Orlando.  
      Return to Newsletter Explore More
      4 min read Entrevista con Instructora de OCEANOS María Fernanda Barbarena-Arias
      Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Roy Armstrong
      Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Juan Torres-Pérez
      Article 14 hours ago View the full article
    • By NASA
      8 Min Read Kathryn Sullivan: The First American Woman to Walk in Space
      Astronaut Kathryn D. Sullivan checks the latch of the SIR-B antenna in the space shuttle Challenger's open cargo bay during her historic extravehicular activity (EVA) on Oct. 11, 1984. Earlier, America's first woman to perform an EVA and astronaut David C. Leestma, participated in an in-space simulation of refueling a spacecraft in orbit. Credits: NASA Forty years ago, in October 1984, Kathryn D. Sullivan became the first American woman to walk in space. But being the first presented several challenges that started well before she took those historic steps. Things got complicated just after she learned of her assignment.
      Questions of Physiology
      Biomedical researchers at NASA’s Johnson Space Center (JSC) raised what they believed was a serious issue with women walking in space and alerted George W.S. Abbey, the head of the Flight Crew Operations Directorate. Females, he learned, were more likely than their male counterparts to develop the bends in the low-pressure environment of the extravehicular mobility unit (EMU), the spacesuit she would wear. To alleviate the possibility of developing decompression syndrome, all spacewalkers had to breathe pure oxygen before a spacewalk to eliminate nitrogen from their bloodstream. Researchers insisted Sullivan (and any future women spacewalkers) spend more time than their male counterparts breathing pure oxygen before going outside of the space shuttle. Sullivan quickly learned that there were flaws in the research, which she countered, and Abbey ended up approving the same requirements for men and women doing an extravehicular activity (EVA). 
      Setting the Record
      After the STS-41G crew had been named in the fall of 1983, a colleague—flush with excitement over the recent flight announcement — congratulated Sally K. Ride and Sullivan on their new titles: Ride being the first woman to fly in space twice and Sullivan the first woman to walk in space. Both shook their heads and explained that it would be many months before launch and that a Soviet woman would fly and do a spacewalk well before the space shuttle Challenger and her crew made it to orbit. As expected, the Soviets assigned cosmonaut Svetlana Y. Savitskaya to a second mission in 1983, less than a month after NASA’s crew announcement. In July 1984, Savitskaya, not Ride, went on to become the first woman to enter space twice and earned the distinction of being the first female to walk in space.
      Astronauts Sally K. Ride (right) and Kathryn D. Sullivan, two of three mission specialists, synchronize their watches prior to ingressing the Space Shuttle Challenger on the launch pad at Kennedy Space Center on October 5, 1984.NASA Sullivan was not disappointed at losing the title. As she recalled in an oral history interview, being selected for an EVA was an “extraordinary opportunity,” and it did not matter where she was in the queue. She could not understand how people arrived at the idea that the “seventh, tenth, or thirteenth … is [any] less meaningful … than some historical first.”
      Others at the Johnson Space Center still thought there was a way they could best the Soviets. Sullivan’s trainers took note of how short Savitskaya’s EVA was. It was only about three and a half hours. “A little bit more than that,” they explained, and “you’ll get the duration record!” But the idea of breaking her record by a few minutes seemed ludicrous. “I’m certainly not going to go tromping around on dinner speeches … saying, ‘Well yes, but I have the duration record.’” 
      “Hello, I’m right here!”
      While the issue of breaking and setting records remained of interest at NASA more than twenty years after the Soviets sent cosmonaut Yuri Gagarin into space, Sullivan found herself grappling with other matters she found equally frustrating. First, there was the sexist media. No journalist asked how she was feeling about her role in the mission. Flying women in space was still new to the American news media in 1983—Ride had only flown her first mission in June, and while Judith A. Resnik had been named to a mission, she had not yet been in orbit. But Ride had not completed an EVA; only men had walked in space, and some found the activity challenging. Astronaut Eugene A. Cernan described his first EVA as the “spacewalk from hell.” Spacewalks can be physically demanding, and it was assumed that women might not have the strength to do so. Reporters asked commander Robert L. Crippen and Ride, “Do you think Kathy can do this?” Sitting at the preflight press conference she reminded reporters that she could speak for herself. “Hello, I’m right here! Hello. Hello.”
      The crew assigned to the STS-41G mission included (seated left to right) Jon A. McBride, pilot; mission specialists Sally K. Ride, Kathryn D. Sullivan, and David C. Leestma. Standing in the rear, left to right, are payload specialist Paul D. Scully-Power, mission commander Robert Crippen, and payload specialist Marc Garneau. Launched aboard the Space Shuttle Challenger on October 5, 1984, the STS-41G mission marked the first flight to include two women.NASA There was also the matter of why her spacewalking partner, David C. Leestma, led the EVA. She had two years seniority in the Astronaut Office, arriving in 1978; NASA named Leestma to the corps in 1980. She also worked on spacesuit issues and the mission’s payload longer than he had, but both were rookies on this mission. Sullivan did not think Crippen and Abbey thought she was incapable, but for traditional norms to have been breached in this instance she could not explain why she—the senior ranking astronaut—was playing a support role instead of leading. If anyone asked why, Sullivan told Crippen he—not she—would have to answer the tough questions.
      Space Suit Fit
      As she prepared for the flight, she began training in the shuttle EMU, which never quite fit her body. The suit’s elbow did not align with hers so when she bent her arm, she had to use extra force. The lower portion of the suit was misaligned, making it difficult to bend her knee. Being the first American woman to do a spacewalk, she decided what was most important was to perform the EVA and demonstrate the EMU worked for women. “I reckoned the wrong thing to do was to turn the first evolution of a woman doing a spacewalk into a controversy. … I just sucked it up and dealt with it.” The suit techs knew the EMU was not quite her size, but she made it work. Later, when assigned to STS-45, one of the techs noticed how poorly the suit fit. “We ought to do something about it. It ought to fit you,” he said. Sullivan responded, “We can start that conversation now, but if you think I was going to make that the conversation on the first EVA you’re crazy.”
      Astronaut Kathryn D. Sullivan, STS-41G mission specialist, gets some help with her extravehicular mobility unit (EMU) prior to participating in an underwater simulation of an extravehicular activity (EVA) scheduled for her flight aboard the Columbia in October 1984. Dr. Sullivan and David C. Leestma (out of frame) participated in the rehearsal in NASA’s weightless environment training facility (WET-F) at the Johnson Space Center.NASA A Walk to Remember
      Two days after Sullivan’s thirty-third birthday, STS-41G launched on October 5, 1984. Once in orbit, the flight plan changed quickly. A problem with a malfunctioning Ku-band antenna meant that the EVA had to be pushed back to the day before reentry. Sullivan worried that the walk might be scrapped, but when they finally began the pre-breathing protocol, she relaxed. “Challenger, Houston: You are GO for EVA,” Sullivan recalled, “were the sweetest words I had ever heard.” Sullivan and Leestma’s EVA was short—only three hours and twenty-nine minutes—but busy. Leestma demonstrated it was possible to refuel satellites in orbit, while Sullivan monitored his work. When he wrapped up his task, Sullivan finally had the opportunity to “do something, not just watch things.” She stowed the malfunctioning antenna and before they went back inside the shuttle, they filmed a scene for an IMAX film, The Dream is Alive—where the two spacewalkers rose from the bottom of the space shuttle’s windows and waved at the crew inside, mimicking the “Kilroy Was Here” meme. When filming concluded, Sullivan and Leestma returned to Challenger. “My first spacewalking adventure,” Sullivan wrote in her memoir, “was over all too soon.” The next day, President Ronald Reagan called to ask Sullivan about her experience. “Kathy, when we met at the White House, I know you were excited about walking in space. Was it what you expected?” he asked. Sullivan responded affirmatively and added, “I think it was the most fantastic experience of my life.”
      I think it was the most fantastic experience of my life.
      Kathryn Sullivan
      NASA Astronaut
      When she returned to JSC she learned that the EVA flight team had tried to figure out how to send her a diplomatic message to stay outside longer to beat Savitskaya’s record. There ended up being a “five-or six-minute difference” between Sullivan and Savitskaya, “and in the wrong direction as far as they were concerned.”
      Despite all the challenges she faced as the first American woman to walk in space, Sullivan called the EVA “a fabulously cool experience.” She hoped to do another, but she never received another assignment to walk in space. She recognized what a unique opportunity she had—very few people have flown in space, and even fewer “get to sneak outside. I’m not going to diminish one dose of sneaking outside just because I didn’t get two, three, or four.”
      Watch Suit Up – 50 Years of Spacewalks About the Author
      Jennifer Ross-Nazzal
      NASA Human Spaceflight HistorianJennifer Ross-Nazzal is the NASA Human Spaceflight Historian. She is the author of Winning the West for Women: The Life of Suffragist Emma Smith DeVoe and Making Space for Women: Stories from Trailblazing Women of NASA's Johnson Space Center.
      Share
      Details
      Last Updated Oct 07, 2024 Related Terms
      NASA History Astronauts Former Astronauts Humans in Space Kathryn D. Sullivan STS-41G Women at NASA Explore More
      4 min read The Iconic Photos from STS-41B: Documenting the First Untethered Spacewalk
      Article 8 months ago 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Article 3 months ago 10 min read 35 Years Ago: STS-41G – A Flight of Many Firsts
      Article 5 years ago Keep Exploring Discover More Topics From NASA
      Explore NASA’s History
      Women at NASA
      Space Shuttle
      International Space Station Spacewalks
      View the full article
    • By NASA
      Earth as viewed from the International Space Station.Credit: NASA The NASA-funded Translational Research Institute for Space Health (TRISH) announced its selections for the institute’s 2024 postdoctoral fellowship, a space health program intended to launch the careers of a new generation of researchers tackling various challenges involved with human space exploration.
      The program supports early-career scientists pursuing research with the potential to reduce the health risks associated with spaceflight. Selected fellows will participate in TRISH’s Academy of Bioastronautics, a mentorship community for space health professionals, and receive a two-year salary stipend. Fellows were selected based on the strengths of the various projects they proposed. Projects are expected to begin in September.
      “Our TRISH program has always prioritized providing the next generation with the tools to further human health in space,” said Dr. Rihana Bokhari, acting TRISH chief scientific officer and assistant professor at Baylor College of Medicine in Houston. “As space becomes more accessible to more people, investing in these early-career scientists is necessary to develop solutions to mitigate the health risks that life in space may pose. We are eager to have this group join our postdoctoral fellowship program and enhance their research for spaceflight.”
      The following fellows were selected:
      Carolyn Chlebek, Ph.D.
      MaineHealth
      Mentor: Clifford Rosen, M.D.
      Project: Bone Metabolism is Altered by Skeletal Unloading and Nutrient Limitation During Long-duration Spaceflight
      Katharyn Flickinger, Ph.D.
      University of Pittsburgh
      Mentor: Clifton Callaway, M.D., Ph.D.
      Project: Metabolic Measurement, Manipulation, and Countermeasure Strategies
      Patrick Opdensteinen, M.Sc., Ph.D.
      University of California, San Diego
      Mentor: Nicole Steinmetz, Ph.D. Project: Streamlined Molecular Farming of Virus-Like Particle (VLP) Therapeutics in Space
      The institute is supported by NASA’s Human Research Program to solve the challenges of human deep space exploration. Led by Baylor College of Medicine’s Center for Space Medicine, the consortium leverages partnerships with Caltech in Pasadena, California and Massachusetts Institute of Technology in Cambridge.
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and missions to the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.
      -end-
      Kelly Humphries / Laura Sorto
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov / laura.g.sorto@nasa.gov
      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...